Terroir 2016 banner
IVES 9 IVES Conference Series 9 Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

Abstract

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.
Two vineyards, both on east slopes, one at 550 meters elevation with a high quality potential and one at 250 meters with a medium quality potential were compared. Vineyards were chosen in collaboration with the head-winemaker of the cooperative Tramin based on his observations and experience about quality potential. For the experiment 600 kg of grapes from each vineyard site were hand-picked the day before harvest for the commercial winery took place.

Grapes were stored over night at 4°C and processed in the experimental winery at Laimburg research centre the day after harvest. Three different pressing techniques were applied in duplicates of 100kg each. Treatments were composed as follows: (1) “classic”, pre-installed press program with 120 minutes and crumbling after each pressure step, (2) “cremant”, gentle and sequential press program with 180 minutes and fewer crumbling steps and (3) “maceration” consisted of a 120 minutes cold soak followed by a very quick press program of 30 minutes.

To track the evolution and extraction kinetics of pH, total acidity, tartaric acid, malic acid, total polyphenols and catechins, juice samples were taken after each cycle and analyzed right away in the wine laboratory.
At approximately 150 kPa (21,8 psi) pressure the must is divided in fraction one and fraction two what corresponds to the press-wine. Two experimental wines are made out of each batch of grapes: one contains only must from the first fraction, and the other is a combination of fraction one and two in the original proportion.

Chemical must composition depends on the vineyard site and the processing technique in the winery. Total acidity, pH, malic acid and polyphenol content of the must are affected from the chosen press program. Nonetheless the absolute content of the chemical components is different, for grapes coming from different vineyards and the different pressing techniques, the trend of the extraction of these must components remains more or less the same during the pressing procedure.

Sensory analyses and aroma analyses show a distinct profile of the two vineyard sites. The different pressing techniques had an impact on the sensory profile of the wines. To what has been observed in this experiment, for overall wine quality it was beneficial to use the entire must; wines made without the press-fraction are described as too light, not as complex and not as typical.
Important differences are observed for the two vintages shown in this work. Depending on the quality potential of the grapes and the vintage, a two hours maceration followed by a quick pressing showed interesting results. This might be a promising option to save press-capacity and to process more fruit in the short period of harvest.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Konrad Pixner

Research Centre for Agriculture and Forestry Laimburg, Bolzano, Italy

Contact the author

Keywords

Terroir, viticulture, Pinot Blanc, sensory analysis, wine quality

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère.

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.