terclim by ICS banner
IVES 9 IVES Conference Series 9 OIV 9 OIV 2024 9 Short communications - Viticulture, table grapes, dried grapes and unfermented grape products 9 Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Abstract

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible. Different plant growth regulators are available to exploit cell plasticity, arousing the production of somatic embryo-related structures or adventitious meristems which will subsequently regenerate their root system. Despite most of the scientific literature on vitis spp. In this matter having been mainly oriented on the somatic embryogenesis regeneration pathway, the provision of newly juvenile tissues could become a suitable starting explant for the adventitious shoot regeneration.  Vitis vinifera wine and grapes cultivars as well as vitis hybrid genotypes used as rootstock have been studied regarding their regeneration potential previous and after the agrobacterium-mediated genetic transformation. Adventitious shoot regeneration from cotyledons and hypocotyls obtained from somatic embryos, led to the obtainment and selection of several transformed lines, expressing the nptii (neomycin phosphotransferase ii) and the egfp (enhanced green fluorescent protein), opening a supplementary opportunity to foster the transformed cell regeneration competence.

Embriogenesi somatica e organogenesi: processi di rigenerazione essenziali per la trasformazione genetica in vite

La pluripotenza cellulare consente di cambiare il destino cellulare, stimolando la riorganizzazione e la formazione di nuove strutture vegetative a partire da tessuti somatici già differenziati. Sebbene molti fattori siano coinvolti nella determinazione del successo di un programma di miglioramento genetico basato sull’impiego di moderne tecniche biotecnologiche, la definizione di una specifica strategia di rigenerazione in vitro è fondamentale nella velocizzazione e nel rendere tali applicazioni biotecnologiche attuabili. Differenti sostanze ormonali sono disponibili per sfruttare la plasticità cellulare, stimolando la produzione di embrioni somatici o meristemi avventizi che successivamente rigenereranno il loro apparato radicale. Nonostante la letteratura scientifica in materia di rigenerazione in vitro di vitis spp, sia prevalentemente orientata nel sistema di rigenerazione per embriogenesi somatica, la disponibilità di nuovi tessuti giovanili può essere un’efficace risorsa da impiegare come espianto iniziale per la rigenerazione avventizia di germogli. Varietà di uva da vino e da tavola, nonché genotipi ibridi di vitis, generalmente usati come portinnesti sono stati studiati per la loro potenzialità di rigenerazione prima e dopo la trasformazione genetica mediata da agrobacterium. La rigenerazione avventizia di germogli da cotiledoni e ipocotili, ottenuti da embrioni somatici, ha portato alla selezione di alcune linee geneticamente trasformate, esprimenti il gene nptii (neomyicin phosphotransferase ii) e il gene egfp (enhanced-green fluorescent protein), aprendo la possibilità di favorire la competenza alla rigenerazione delle cellule trasformate.

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Luca Capriotti¹, Silvia Sabbadini¹, Angela Ricci¹, Irene Piunti¹, Victoria Sùnico Sanchez¹, Patrizio De Angelis¹, Oriano Navacchi², Bruno Mezzetti¹

¹ Marche Polytechnic University, Via Brecce Bianche 10, Ancona, Italy
² Vitroplant Italia S.R.L, Via Loreto, 170, Cesena, Italy

Contact the author*

Tags

IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Evaluation of the enological potential of red grapes in southern Brazil

The Campanha Gaúcha is located in the pampa biome and has unique characteristics, as it is the hottest producing region with the lowest volume of rain in Southern Brazil. Furthermore, the large extensions of flat or low-sloping areas, harsh winters and great sunshine during the ripening period, made this the second largest producer of fine wines in Brazil.

Exploring the dynamic between yeast mannoproteins structure and wine stability

Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. during the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability.

New ways of grape pomaces valorization: production of functional beverages or nutraceuticals

The wine industry generates each year 20 million tons of by-products. Among them grape pomaces represent a big part that can be considered as a source of potentially bioactive molecules such as polyphenols. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called scoby.

The evolution of italian vine nursery production over the past 30 years

Italy has a long history of viticulture and has become one of the world’s leading producers of vine propagation material. The Italian vine nursery industry is today highly qualified and has become highly competitive on a global scale. The quality of the material is guaranteed by compliance with European Union regulations, which have been in force since the second half of the 20th century and have subsequently been supplemented and updated.

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.