terclim by ICS banner
IVES 9 IVES Conference Series 9 OIV 9 OIV 2024 9 Short communications - Viticulture, table grapes, dried grapes and unfermented grape products 9 Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Abstract

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible. Different plant growth regulators are available to exploit cell plasticity, arousing the production of somatic embryo-related structures or adventitious meristems which will subsequently regenerate their root system. Despite most of the scientific literature on vitis spp. In this matter having been mainly oriented on the somatic embryogenesis regeneration pathway, the provision of newly juvenile tissues could become a suitable starting explant for the adventitious shoot regeneration.  Vitis vinifera wine and grapes cultivars as well as vitis hybrid genotypes used as rootstock have been studied regarding their regeneration potential previous and after the agrobacterium-mediated genetic transformation. Adventitious shoot regeneration from cotyledons and hypocotyls obtained from somatic embryos, led to the obtainment and selection of several transformed lines, expressing the nptii (neomycin phosphotransferase ii) and the egfp (enhanced green fluorescent protein), opening a supplementary opportunity to foster the transformed cell regeneration competence.

Embriogenesi somatica e organogenesi: processi di rigenerazione essenziali per la trasformazione genetica in vite

La pluripotenza cellulare consente di cambiare il destino cellulare, stimolando la riorganizzazione e la formazione di nuove strutture vegetative a partire da tessuti somatici già differenziati. Sebbene molti fattori siano coinvolti nella determinazione del successo di un programma di miglioramento genetico basato sull’impiego di moderne tecniche biotecnologiche, la definizione di una specifica strategia di rigenerazione in vitro è fondamentale nella velocizzazione e nel rendere tali applicazioni biotecnologiche attuabili. Differenti sostanze ormonali sono disponibili per sfruttare la plasticità cellulare, stimolando la produzione di embrioni somatici o meristemi avventizi che successivamente rigenereranno il loro apparato radicale. Nonostante la letteratura scientifica in materia di rigenerazione in vitro di vitis spp, sia prevalentemente orientata nel sistema di rigenerazione per embriogenesi somatica, la disponibilità di nuovi tessuti giovanili può essere un’efficace risorsa da impiegare come espianto iniziale per la rigenerazione avventizia di germogli. Varietà di uva da vino e da tavola, nonché genotipi ibridi di vitis, generalmente usati come portinnesti sono stati studiati per la loro potenzialità di rigenerazione prima e dopo la trasformazione genetica mediata da agrobacterium. La rigenerazione avventizia di germogli da cotiledoni e ipocotili, ottenuti da embrioni somatici, ha portato alla selezione di alcune linee geneticamente trasformate, esprimenti il gene nptii (neomyicin phosphotransferase ii) e il gene egfp (enhanced-green fluorescent protein), aprendo la possibilità di favorire la competenza alla rigenerazione delle cellule trasformate.

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Luca Capriotti¹, Silvia Sabbadini¹, Angela Ricci¹, Irene Piunti¹, Victoria Sùnico Sanchez¹, Patrizio De Angelis¹, Oriano Navacchi², Bruno Mezzetti¹

¹ Marche Polytechnic University, Via Brecce Bianche 10, Ancona, Italy
² Vitroplant Italia S.R.L, Via Loreto, 170, Cesena, Italy

Contact the author*

Tags

IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

The bottleneck/cork interface: A key parameter for wine aging in bottle

The shelf life of wine is a major concern for the wine industry. This is particularly true for wines intended for long cellaring, which are supposed to reach their peak after an ageing period ranging from a few months to several years, or even decades. Low, controlled oxygen inputs through the closure system are generally necessary for the wine to evolve towards its optimum organoleptic characteristics. Our previous studies have already shown that the interface between the cork and the bottleneck plays a crucial role in the transfer of oxygen into the bottled wine.

Publication of the 3rd edition of the OIV ampelographic descriptors

Ampelography is aimed at describing the vine according to several characteristics, such as morphology, agronomic aptitudes, technological potential, and genetics. The description of varieties and species of vitis has long been the subject of numerous scientific and technical studies by eminent specialists for a long time, which have led the OIV to publish in 1983 the “descriptor list for grape varieties and vitis species”, a milestone among the OIV worldwide recognised codes.

Sélection génétique des variétés originelles d’Arménie, berceau de la viticulture mondiale

Armenia, a small country in the South of the Caucasus, has been rediscovering its wine-growing past since the discovery in 2007 of archaeological wine-growing remains dating back around 8,000 years. They are among the oldest in the world. Despite a great diversity of grape varieties, Armenian winegrowers did not have sufficiently organized genetic collections to produce plants and satisfy the growing demand for planting.

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).