Terroir 2014 banner
IVES 9 IVES Conference Series 9 Une procédure de mise à jour des zones AOC

Une procédure de mise à jour des zones AOC

Abstract

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today. These surfaces are irreparably lost for appellations. Thus, INAO proposed to set up a procedure for to actualize AOC zonings in order to put them in coherence with territory evolutions. This procedure is based on GIS use and photo-interpretation. This procedure isn’t just an actualization for to be consistent with the last plot registry. This procedure allows realizing a real diagnostic of consumption the area AOC by urbanization. This allows on one side to better know real potentialities of the appellation but also, to help producers and INAO to protect AOC areas and to participate at territorial dynamics and at the planning of the territory.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Gilles FLUTET (1), Cécile FRANCHOIS (2), Alexandre GRELIER (3)

Institut National de l’Origine et de la Qualité
(1) Service Délimitation, la jasse de Maurin 34970 LATTES, FRANCE 
(2) Service Délimitation, 16 rue du golf 21800 QUETIGNY, France
(3) Délégation Territoriale Sud Ouest, -1 quai Wilson – Bât. A – 3ème étage 33130 BEGLES 

Keywords

zoning, delimitation, AOC, potential, protection, territorial dynamics

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Assessment of the impact of actions in the vineyard and its surrounding environment on biodiversity in Rioja Alavesa (Spain)

Traditional viticulture areas have experienced in the last decades an intensification of field practices, linked to an increased use of fertilisers and phytosanitary products, and to a more intensive mechanization and uniformization of the landscape. This change in management has sometimes led to higher rates of soil erosion andloss of soil structure, fertility decline, groundwater contamination, and to an increased pressure of pests and diseases. Additionally, intensification usually leads to a simplification of landscapes, of particular concern in prestigious wine grape regions where the economical revenue encourages the conversion of land use from natural habitats to high value wine grape production. To revert this trend, it is necessary that growers implement actions that promote biodiversity in their vineyards. The aim of this study is to assess the impact of the implementation of cover crops, vegetational corridors, dry stone walls and vineyard biodiversity hotspots estimated through the study of arthropods. The work has been carried out in four vineyards in Rioja Alavesa belonging to Ostatu winery, where these infrastructures were implemented in 2020. The presence and diversity of arthropods was studied by capturing them at different times in the season and at different distances from the infrastructure using pit-fall traps in the soil and yellow, white and blue chromatic traps at the canopy level. This is a preliminary study in which all adult insects were sorted to the taxonomic level of order and Coleoptera were classified to morphospecies. The results obtained show that there is a relationship between the basic characteristics of the vineyard and the arthropods captured, with a positive effect, although also dependent on the vineyard, of the presence of infrastructure.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation.

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture).