Terroir 2014 banner
IVES 9 IVES Conference Series 9 Une procédure de mise à jour des zones AOC

Une procédure de mise à jour des zones AOC

Abstract

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today. These surfaces are irreparably lost for appellations. Thus, INAO proposed to set up a procedure for to actualize AOC zonings in order to put them in coherence with territory evolutions. This procedure is based on GIS use and photo-interpretation. This procedure isn’t just an actualization for to be consistent with the last plot registry. This procedure allows realizing a real diagnostic of consumption the area AOC by urbanization. This allows on one side to better know real potentialities of the appellation but also, to help producers and INAO to protect AOC areas and to participate at territorial dynamics and at the planning of the territory.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Gilles FLUTET (1), Cécile FRANCHOIS (2), Alexandre GRELIER (3)

Institut National de l’Origine et de la Qualité
(1) Service Délimitation, la jasse de Maurin 34970 LATTES, FRANCE 
(2) Service Délimitation, 16 rue du golf 21800 QUETIGNY, France
(3) Délégation Territoriale Sud Ouest, -1 quai Wilson – Bât. A – 3ème étage 33130 BEGLES 

Keywords

zoning, delimitation, AOC, potential, protection, territorial dynamics

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.