Terroir 2014 banner
IVES 9 IVES Conference Series 9 Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

Abstract

The Tokaj Kereskedőház Ltd. is the only state owned winery in Hungary. The company is integrating grapes for wine production from 1100 hectares of vineyard, which consist of 3500 parcels with average size of 0,3 hectares, owned by about 500 families of the region. The vineyards are unevenly spread in total 27 village of Tokaj region. 

The aim of our study was to determine the state of vineyards of each single parcel of the integrated area, and the characterization of the ecology of the vineyard sites. Based on the information collected a site-specific vineyard design and cultural practice could be achieved on the given territory. 

The state of vineyards, concerning variety, training system, trellis system, row and vine spacing, row orientation, and production characteristic was determined by visual inspection of every single parcel. Airborne hyperspectral imagery was taken, covering the whole Tokaj Wine Region. High-resolution spectral-spatial geodata were captured and analyzed to focus on variety determination, evaluate biophysical properties (NDVI, LAI, Red Edge Position), canopy continuity, structure and identify row anomalies. 

The characterization of vineyards sites was accomplished based on large-scale determination of topography, soil and meso- and macroclimate variables covering the total 11000 hectares planted and potential vineyard land area of Tokaj Region. According to soil survey Digital Optimalized Soil Related Maps and Information Method was taken to produce the proper thematic data layers in 25 m spatial resolution. Results of surveys are analyzed and managed in a geographical information system designed for the project. 

The methods applied during the data collection and analysis will be detailed, while the preliminary results of the state of vineyard and the characterization of vineyard sites will be demonstrated.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Gy. LUKÁCSY (1), A. TOMBOR (2), G. GORECZKY (2), L. NAGY (2), J. SZABÓ (3), P. LÁSZLÓ (3), P. BURAI (4), L. BEKŐ (4), A. JUNG (5), D. KRISTÓF (6), Gy. D. BISZTRAY (1), B. BÁLÓ (1)

(1) Department of Viticulture Institute of Viticulture and Oenology Corvinus University of Budapest 
(2) Tokaj Kereskedőház Ltd. 
(3) Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy for Sciences 
(4) Research Institute of Remote Sensing and Rural Development, University of Károly Róbert 
(5) Department of Geoinformatics & Remote Sensing, University of Leipzig, Germany 
(6) Institute of Geodesy, Cartography and Remote Sensing 

Contact the author

Keywords

Tokaj, vineyard survey, characterization of vineyard site, digital soil mapping, LIDAR survey, hyperspectral imaging

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Drought effect on aromatic and phenolic potential of seven recovered grapevine varieties in Castilla-La Mancha region (Spain)

The effects of climate change are seriously affecting the quality of wine grapes. High temperatures and drought cause imbalances in the chemical composition of grapes. The result is overripe grapes with low acidity and high sugar content, which produce wines with excessive alcohol content, lacking in freshness and not very aromatic. As a consequence, the search of varieties with capacity of produce quality grapes in adverse climate conditions is a good alternative to preserve the sustainability of vineyards. In this work, quality parameters of seven Vitis vinifera L. cultivars (five whites and two reds) recently recovered from extinction and grown under two different hydric regimes (rainfed and irrigated) were analyzed during the 2020 vintage. At harvest time, weight of 100 berries, must physicochemical parameters (brix degree, total acidity, malic acid, pH), and carbon and oxygen isotope ratios (δ13C, δ18O) were determined. Subsequently, varietal aroma potential index (IPAv) and total polyphenol index (TPI) were analyzed. Quality parameters, IPAv and TPI, showed significant differences between varieties and water regimes. Both red varieties, Moribel and Tinto Fragoso, stood out for their high aromatic and phenolic potential, which was higher under rainfed regime. Regarding to white varieties, Montonera del Casar and Jarrosuelto stood out in terms of varietal aroma potential. Montonera del Casar high acidity in its musts and Jarrosuelto showed the highest berry weights.

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.