Terroir 2014 banner
IVES 9 IVES Conference Series 9 Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

Abstract

The Tokaj Kereskedőház Ltd. is the only state owned winery in Hungary. The company is integrating grapes for wine production from 1100 hectares of vineyard, which consist of 3500 parcels with average size of 0,3 hectares, owned by about 500 families of the region. The vineyards are unevenly spread in total 27 village of Tokaj region. 

The aim of our study was to determine the state of vineyards of each single parcel of the integrated area, and the characterization of the ecology of the vineyard sites. Based on the information collected a site-specific vineyard design and cultural practice could be achieved on the given territory. 

The state of vineyards, concerning variety, training system, trellis system, row and vine spacing, row orientation, and production characteristic was determined by visual inspection of every single parcel. Airborne hyperspectral imagery was taken, covering the whole Tokaj Wine Region. High-resolution spectral-spatial geodata were captured and analyzed to focus on variety determination, evaluate biophysical properties (NDVI, LAI, Red Edge Position), canopy continuity, structure and identify row anomalies. 

The characterization of vineyards sites was accomplished based on large-scale determination of topography, soil and meso- and macroclimate variables covering the total 11000 hectares planted and potential vineyard land area of Tokaj Region. According to soil survey Digital Optimalized Soil Related Maps and Information Method was taken to produce the proper thematic data layers in 25 m spatial resolution. Results of surveys are analyzed and managed in a geographical information system designed for the project. 

The methods applied during the data collection and analysis will be detailed, while the preliminary results of the state of vineyard and the characterization of vineyard sites will be demonstrated.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Gy. LUKÁCSY (1), A. TOMBOR (2), G. GORECZKY (2), L. NAGY (2), J. SZABÓ (3), P. LÁSZLÓ (3), P. BURAI (4), L. BEKŐ (4), A. JUNG (5), D. KRISTÓF (6), Gy. D. BISZTRAY (1), B. BÁLÓ (1)

(1) Department of Viticulture Institute of Viticulture and Oenology Corvinus University of Budapest 
(2) Tokaj Kereskedőház Ltd. 
(3) Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy for Sciences 
(4) Research Institute of Remote Sensing and Rural Development, University of Károly Róbert 
(5) Department of Geoinformatics & Remote Sensing, University of Leipzig, Germany 
(6) Institute of Geodesy, Cartography and Remote Sensing 

Contact the author

Keywords

Tokaj, vineyard survey, characterization of vineyard site, digital soil mapping, LIDAR survey, hyperspectral imaging

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.

Climate projections over France wine-growing region and its potential impact on phenology

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid