Terroir 2014 banner
IVES 9 IVES Conference Series 9 Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

Abstract

The Tokaj Kereskedőház Ltd. is the only state owned winery in Hungary. The company is integrating grapes for wine production from 1100 hectares of vineyard, which consist of 3500 parcels with average size of 0,3 hectares, owned by about 500 families of the region. The vineyards are unevenly spread in total 27 village of Tokaj region. 

The aim of our study was to determine the state of vineyards of each single parcel of the integrated area, and the characterization of the ecology of the vineyard sites. Based on the information collected a site-specific vineyard design and cultural practice could be achieved on the given territory. 

The state of vineyards, concerning variety, training system, trellis system, row and vine spacing, row orientation, and production characteristic was determined by visual inspection of every single parcel. Airborne hyperspectral imagery was taken, covering the whole Tokaj Wine Region. High-resolution spectral-spatial geodata were captured and analyzed to focus on variety determination, evaluate biophysical properties (NDVI, LAI, Red Edge Position), canopy continuity, structure and identify row anomalies. 

The characterization of vineyards sites was accomplished based on large-scale determination of topography, soil and meso- and macroclimate variables covering the total 11000 hectares planted and potential vineyard land area of Tokaj Region. According to soil survey Digital Optimalized Soil Related Maps and Information Method was taken to produce the proper thematic data layers in 25 m spatial resolution. Results of surveys are analyzed and managed in a geographical information system designed for the project. 

The methods applied during the data collection and analysis will be detailed, while the preliminary results of the state of vineyard and the characterization of vineyard sites will be demonstrated.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Gy. LUKÁCSY (1), A. TOMBOR (2), G. GORECZKY (2), L. NAGY (2), J. SZABÓ (3), P. LÁSZLÓ (3), P. BURAI (4), L. BEKŐ (4), A. JUNG (5), D. KRISTÓF (6), Gy. D. BISZTRAY (1), B. BÁLÓ (1)

(1) Department of Viticulture Institute of Viticulture and Oenology Corvinus University of Budapest 
(2) Tokaj Kereskedőház Ltd. 
(3) Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy for Sciences 
(4) Research Institute of Remote Sensing and Rural Development, University of Károly Róbert 
(5) Department of Geoinformatics & Remote Sensing, University of Leipzig, Germany 
(6) Institute of Geodesy, Cartography and Remote Sensing 

Contact the author

Keywords

Tokaj, vineyard survey, characterization of vineyard site, digital soil mapping, LIDAR survey, hyperspectral imaging

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The vascular connections in grafted plants under examination

Aims: Decreasing longevity of vineyards due to the increase in the infection of different grapevine trunk diseases is a growing concern, and could be related to the quality of grafting. The main aim of this study was to evaluate the use of xylem hydraulic conductivity measurements as a potential indicator for the quality of vascular connections in

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.