Terroir 2014 banner
IVES 9 IVES Conference Series 9 Focus on terroir studies in the eger wine region of Hungary

Focus on terroir studies in the eger wine region of Hungary

Abstract

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

The aim of our study from 2008 was to use the most advanced methodology available to create a geo-referenced model database describing production sites in the Eger wine region. The database includes geo-referenced information of geomorphology (slope, exposition, and elevation), lithology, soil type, depth of water table and pH of soil water. Special dataset was introduced in the database of 9 production sites cultivating Vitis vinifera L. cv. ‘Kékfrankos’ (Blaufränkisch), the most abundant red grape cultivar of the region and of Hungary. The vines on the selected sites were of similar age, plant and row distance, all vertically shoot positioned. Soil and canopy management were performed similarly, as well. Meteorological data were collected from automatic weather stations nearby the examined sites, physical and chemical soil properties were analyzed, phenological stages, yield quantity and quality, as well as wine analytical data and the results of organoleptic evaluation were registered for 3 years. Ortophotos of the investigated sites and hyperspectral NDVI pictures of three special sites were also added to the database.

This study serves as the first model for Hungary, how GIS can aid the classification and characterization of different terroirs and may promote the elaboration of a precise viti-vinicultural practice and appellation origin control system.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Borbála BÁLO (1), Zoltán KATONA (2), Angéla OLASZ (2), , Erika TÓTH (3), Tamás DEÁK (1), Péter BODOR (1), Péter BURAI (4), Petra MAJER (1), Gyula VÁRADI (5), Richard NAGY (6), GyörgyDénes BISZTRAY (1)

(1) Corvinus University of Budapest, Department of Viticulture, 1118 Budapest, Villányi Str. 29-43. Hungary 
(2) Instituteof Geodesy, Cartography and Remote Sensing, 1149 Budapest, Bosnyák Sq. 5. Hungary
(3) Károly Róbert College, Research Institute for Viticulture and Enology, 3300 Eger, Kőlyuktető 1. Hungary 
(4) Károly Róbert College, Institute of Agricultural Information and Rural Development, 3200 Gyöngyös, Mátrai Str. 36. Hungary 
(5) National Agricultural Research and Innovation Centre, Research Institute for Viticulture and Enology, 6000 Kecskemét, Úrihegy Str. 5/A, Hungary 
(6) University of Debrecen, Department of Plant Physiology, 4032 Debrecen, Egyetem Sq. 1. Hungary 

Contact the author

Keywords

Geographic Information System, Digital Terrain Model, geology, soil types, Eger wine region, ‘Egri Bikavér’

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Aim: Climate modelling in viticulture introduced new challenges such as high spatio-temporal monitoring and the use of dependable time series and robustness modelling methods. Land surface temperature (LST) is widely used and particularly MODIS thermal satellite images due to their high temporal resolution (four images per day).

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.