Terroir 2014 banner
IVES 9 IVES Conference Series 9 Focus on terroir studies in the eger wine region of Hungary

Focus on terroir studies in the eger wine region of Hungary

Abstract

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

The aim of our study from 2008 was to use the most advanced methodology available to create a geo-referenced model database describing production sites in the Eger wine region. The database includes geo-referenced information of geomorphology (slope, exposition, and elevation), lithology, soil type, depth of water table and pH of soil water. Special dataset was introduced in the database of 9 production sites cultivating Vitis vinifera L. cv. ‘Kékfrankos’ (Blaufränkisch), the most abundant red grape cultivar of the region and of Hungary. The vines on the selected sites were of similar age, plant and row distance, all vertically shoot positioned. Soil and canopy management were performed similarly, as well. Meteorological data were collected from automatic weather stations nearby the examined sites, physical and chemical soil properties were analyzed, phenological stages, yield quantity and quality, as well as wine analytical data and the results of organoleptic evaluation were registered for 3 years. Ortophotos of the investigated sites and hyperspectral NDVI pictures of three special sites were also added to the database.

This study serves as the first model for Hungary, how GIS can aid the classification and characterization of different terroirs and may promote the elaboration of a precise viti-vinicultural practice and appellation origin control system.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Borbála BÁLO (1), Zoltán KATONA (2), Angéla OLASZ (2), , Erika TÓTH (3), Tamás DEÁK (1), Péter BODOR (1), Péter BURAI (4), Petra MAJER (1), Gyula VÁRADI (5), Richard NAGY (6), GyörgyDénes BISZTRAY (1)

(1) Corvinus University of Budapest, Department of Viticulture, 1118 Budapest, Villányi Str. 29-43. Hungary 
(2) Instituteof Geodesy, Cartography and Remote Sensing, 1149 Budapest, Bosnyák Sq. 5. Hungary
(3) Károly Róbert College, Research Institute for Viticulture and Enology, 3300 Eger, Kőlyuktető 1. Hungary 
(4) Károly Róbert College, Institute of Agricultural Information and Rural Development, 3200 Gyöngyös, Mátrai Str. 36. Hungary 
(5) National Agricultural Research and Innovation Centre, Research Institute for Viticulture and Enology, 6000 Kecskemét, Úrihegy Str. 5/A, Hungary 
(6) University of Debrecen, Department of Plant Physiology, 4032 Debrecen, Egyetem Sq. 1. Hungary 

Contact the author

Keywords

Geographic Information System, Digital Terrain Model, geology, soil types, Eger wine region, ‘Egri Bikavér’

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased. The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

Exploring the dynamic between yeast mannoproteins structure and wine stability

Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. during the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability.

Field performance of red and white “pilzwiderstandsfähige” (PIWI) cultivars in the south of Uruguay

As knowledge about the oenological potential of disease-tolerant grape varieties (PIWI) continues to grow and consumer demand for product safety and sustainable production increases, more governments worldwide are permitting the cultivation of these varieties [1].

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Composition of grape grown on different Homogenous Terroir Units (HTU)

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.