Terroir 2014 banner
IVES 9 IVES Conference Series 9 Focus on terroir studies in the eger wine region of Hungary

Focus on terroir studies in the eger wine region of Hungary

Abstract

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

The aim of our study from 2008 was to use the most advanced methodology available to create a geo-referenced model database describing production sites in the Eger wine region. The database includes geo-referenced information of geomorphology (slope, exposition, and elevation), lithology, soil type, depth of water table and pH of soil water. Special dataset was introduced in the database of 9 production sites cultivating Vitis vinifera L. cv. ‘Kékfrankos’ (Blaufränkisch), the most abundant red grape cultivar of the region and of Hungary. The vines on the selected sites were of similar age, plant and row distance, all vertically shoot positioned. Soil and canopy management were performed similarly, as well. Meteorological data were collected from automatic weather stations nearby the examined sites, physical and chemical soil properties were analyzed, phenological stages, yield quantity and quality, as well as wine analytical data and the results of organoleptic evaluation were registered for 3 years. Ortophotos of the investigated sites and hyperspectral NDVI pictures of three special sites were also added to the database.

This study serves as the first model for Hungary, how GIS can aid the classification and characterization of different terroirs and may promote the elaboration of a precise viti-vinicultural practice and appellation origin control system.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Borbála BÁLO (1), Zoltán KATONA (2), Angéla OLASZ (2), , Erika TÓTH (3), Tamás DEÁK (1), Péter BODOR (1), Péter BURAI (4), Petra MAJER (1), Gyula VÁRADI (5), Richard NAGY (6), GyörgyDénes BISZTRAY (1)

(1) Corvinus University of Budapest, Department of Viticulture, 1118 Budapest, Villányi Str. 29-43. Hungary 
(2) Instituteof Geodesy, Cartography and Remote Sensing, 1149 Budapest, Bosnyák Sq. 5. Hungary
(3) Károly Róbert College, Research Institute for Viticulture and Enology, 3300 Eger, Kőlyuktető 1. Hungary 
(4) Károly Róbert College, Institute of Agricultural Information and Rural Development, 3200 Gyöngyös, Mátrai Str. 36. Hungary 
(5) National Agricultural Research and Innovation Centre, Research Institute for Viticulture and Enology, 6000 Kecskemét, Úrihegy Str. 5/A, Hungary 
(6) University of Debrecen, Department of Plant Physiology, 4032 Debrecen, Egyetem Sq. 1. Hungary 

Contact the author

Keywords

Geographic Information System, Digital Terrain Model, geology, soil types, Eger wine region, ‘Egri Bikavér’

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Characterization of intact glycoside aroma precursors of recovered minority Spanish red grape varieties by High-Resolution Mass Spectrometry

In Spain, the wide diversity of red grapevine varieties represents an advantage when choosing the most suitable one for cultivation based on different climatic conditions, without implying a loss of their enological potential.

Pierce’s disease of grapevines, a new threat to the wine industry in Southern Europe

Pierce’s disease (PD) is considered a potential threat to european viticulture (EPPO a2 list of pathogens since 1981). In the usa, infections caused by the vector-borne bacterium xylella fastidiosa have caused recurrent damage to vineyards in California and the southeastern states. However, vineyards in Europe have remained free of PD until recently, when it was first detected on the island of Mallorca in 2017. The reasons for the absence of PD in continental Europe have not been convincingly explained.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.