Terroir 2014 banner
IVES 9 IVES Conference Series 9 Focus on terroir studies in the eger wine region of Hungary

Focus on terroir studies in the eger wine region of Hungary

Abstract

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

The aim of our study from 2008 was to use the most advanced methodology available to create a geo-referenced model database describing production sites in the Eger wine region. The database includes geo-referenced information of geomorphology (slope, exposition, and elevation), lithology, soil type, depth of water table and pH of soil water. Special dataset was introduced in the database of 9 production sites cultivating Vitis vinifera L. cv. ‘Kékfrankos’ (Blaufränkisch), the most abundant red grape cultivar of the region and of Hungary. The vines on the selected sites were of similar age, plant and row distance, all vertically shoot positioned. Soil and canopy management were performed similarly, as well. Meteorological data were collected from automatic weather stations nearby the examined sites, physical and chemical soil properties were analyzed, phenological stages, yield quantity and quality, as well as wine analytical data and the results of organoleptic evaluation were registered for 3 years. Ortophotos of the investigated sites and hyperspectral NDVI pictures of three special sites were also added to the database.

This study serves as the first model for Hungary, how GIS can aid the classification and characterization of different terroirs and may promote the elaboration of a precise viti-vinicultural practice and appellation origin control system.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Borbála BÁLO (1), Zoltán KATONA (2), Angéla OLASZ (2), , Erika TÓTH (3), Tamás DEÁK (1), Péter BODOR (1), Péter BURAI (4), Petra MAJER (1), Gyula VÁRADI (5), Richard NAGY (6), GyörgyDénes BISZTRAY (1)

(1) Corvinus University of Budapest, Department of Viticulture, 1118 Budapest, Villányi Str. 29-43. Hungary 
(2) Instituteof Geodesy, Cartography and Remote Sensing, 1149 Budapest, Bosnyák Sq. 5. Hungary
(3) Károly Róbert College, Research Institute for Viticulture and Enology, 3300 Eger, Kőlyuktető 1. Hungary 
(4) Károly Róbert College, Institute of Agricultural Information and Rural Development, 3200 Gyöngyös, Mátrai Str. 36. Hungary 
(5) National Agricultural Research and Innovation Centre, Research Institute for Viticulture and Enology, 6000 Kecskemét, Úrihegy Str. 5/A, Hungary 
(6) University of Debrecen, Department of Plant Physiology, 4032 Debrecen, Egyetem Sq. 1. Hungary 

Contact the author

Keywords

Geographic Information System, Digital Terrain Model, geology, soil types, Eger wine region, ‘Egri Bikavér’

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes).

Soil survey and continuous classification for terroir delineation in the “Colli Orientali del Friuli” wine production area

The combination of a non-parametric dissimilarity index with auger boring recordings was tested in a project of soil suitability evaluation for quality wine production in a 2000-ha hill slope portion of the “Colli Orientali del Friuli” AOC district (Italy).

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

Global changes in temperature patterns necessitate the development of viticultural adaptation strategies. One promising approach involves modifying the training system and elevating trunk height. This study explored the potential of raising the vine trunk as an adaptive strategy to counteract the effects of increasing temperatures and delay ripening. Thermal conditions, radiation levels, and must composition were measured at different heights (10 and 150 cm) in a commercial vineyard of the minority variety Maturana Blanca, trained on a vertical cordon.