IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Better understanding on the fungal chitosan and derivatives antiseptic effect on Brettanomyces bruxellensis in wine.

Better understanding on the fungal chitosan and derivatives antiseptic effect on Brettanomyces bruxellensis in wine.

Abstract

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatile phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons, actors of wine industry are cautious to exploit this biopolymer. CHITOWINE project is born in this background to better understand the chitosan’s mechanism of action on Brettanomyces bruxellensis, to improve the effectiveness of this treatment in wine, and to disseminate recommendations among wine makers. Tests of sensitivity of two batches of fungal chitosan with different molecular weight (Mw) and acetylation degrees (DA) (F1, Mw = 30000 Da, DA = 10%; F4, Mw = 400000 Da, DA = 16%) have been done on 53 strains of B. bruxellensis in wine media. Three profiles were distinguished: strains having increased sensitivity (41%), others showed an intermediate profile, and few strains were categorized as resistant to chitosan (13%). At the end of those tests, F1 chitosan showed effectiveness clearly higher than F4 chitosan [2]. To identify the parameters which enhance or decrease the effectiveness of fungal chitosan, chemicals hydrolysis to modulate the molecular weight and chemical acetylation to modulate acetylation degrees were applied on F1 and F4 chitosan batches. Chemicals hydrolyses permitted the achieving of fractions having a molecular weight from 3000 to 100 000 Da. After a chemical acetylation, fractions fully acetylated were generated. Sensitivity to those chitosan derivatives fractions was thereafter evaluated on B. bruxellensis in wine media to establish a link between the structure and the function of chitosan and then, better understand the mechanism of action of this renewable biopolymer

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

strong> Paulin Margot1, Delattre Cédric1, Brasselet Clément1, Pierre Guillaume1, Dubessay Pascal1, Michaud Philippe1, Gardarin Christine1, Miot-Sertier Cécile2, Albertin Warren2, Ballestra Patricia2, Masneuf-Pomarede Isabelle2, Dutilh Lucie3, Maupeu Julie3, Vallet-Courbin Amélie3, Doco Thierry4, Moine Virginie5, Coulon Joana5 and Dols Marguerite2

1Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont Ferrand, France
2EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Université de Bordeaux
3Microflora – ADERA, EA 4577 Œnologie, ISVV, Bordeaux, France
4INRA, SupAgro, UM1, UMR 1083, UMR Sciences pour l’Œnologie, Montpellier, France
5Biolaffort, Floirac, France

Contact the author

Keywords

fungal chitosan, wine, Brettanomyces bruxellensis, mechanism of action

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Retallack Viticulture EcoVineyards video

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

An in-depth knowledge on the conditions that trigger Botrytis disease and the microbial community associated with the susceptibility/resistance to it could led to the anticipation and response to the Botrytis emergence and severity. Therefore, the present study pretends to establish links between biotic and abiotic factors and the presence/abundance of B. cinerea.

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.