Terroir 2014 banner
IVES 9 IVES Conference Series 9 Fractal analysis of the hydrological information obtained from high-spatial resolution dems: application in terroir zoning of d.o. campo de Borja (Spain)

Fractal analysis of the hydrological information obtained from high-spatial resolution dems: application in terroir zoning of d.o. campo de Borja (Spain)

Abstract

One of the characteristics of the terroir zoning studies that is more complex to manage is the scale dependence. Thus, terroir zoning studies of the same area at different scales are comparable but not equal. Fractal analysis has demonstrated to be a suitable tool to characterize and model natural elements within a defined range of scales. 

Nowadays, the fast evolution of the GISs and the availability of high-resolution topographic information allow to carry out studies considered unthinkable some decades ago. 

Parallelism between the elements which condition the drainage networks of a landscape, and the elements which define the terroir has been observed. It is well known by geomorphologists that the shape of the drainage networks (dendritic, parallel, radial, etc.) depends on natural factors such as climate, vegetation and geological characteristics, particularly lithology and structure, which also characterize the terroir of a region. 

The main objectives of the present study are the quantitative characterization, using techniques of fractal analysis, of the drainage networks of the D.O. Campo de Borja, and the analysis of its relationship with the vineyard distribution within the region. The studied drainage networks have been extracted from a DEM with a resolution of 5 meters. 

The results show the suitability of the study and encourage to deepen into the relationship between the drainage networks crossing the landscape, the geological and topographic characteristics of the environment, and the distribution of the vineyard within the region.

DOI:

Publication date: July 29, 2020

Issue: Terroir 2014

Type: Article

Authors

Joaquín CÁMARA (1), Vicente GÓMEZ-MIGUEL (1), Miguel Ángel MARTÍN (2)

(1) Departamento de Edafología, Universidad Politécnica de Madrid, ETSI Agrónomos 28040 Madrid, Avda. Puerta de Hierro 2, Spain 
(2) Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, ETSI Agrónomos 28040 Madrid, Avda. Puerta de Hierro 2, Spain 

Contact the author

Keywords

fractal analysis, terroir zoning, drainage networks, vineyard distribution, DEM, GIS

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

La région viticole de Mendoza est la principale zone vitivinicole d’Argentine qui se compose de 3 oasis (Nord, Valle de Uco, Sud). La première zone vitivinicole, située dans l’oasis Nord, est composée par les département de Luján de Cuyo et Maipu. C’est la zone de production la plus ancienne et la plus reconnue pour la qualité de sa production. Ce travail se porte plus particulièrement sur le département de Luján de Cuyo qui constitue le lieu traditionnel de production du Malbec argertin. Ce travail propose de caractériser les terroirs et de mettre en avant leurs typicités.

How can historical cultivars mitigate the effects of climate change?

IFV, INRAe and the national network “Partenaires de la Sélection Vigne” representing 37 organizations from the different wine regions, have been working increasingly closely over the last 2 decades towards the preservation of the French varietal patrimony. There are approximately 600 patrimonial varieties according to INRAe and SupAgro Montpellier experts, including ancient cultivars (400) and intravarietal crossbreeds obtained since the 19th century. In the context of a drastic reduction in such varieties from the mid 1980’s in favor of mainstream varieties, it was essential to carry out an inventory of old vines and vineyards. INRAe Vassal collection plays a key role here as it holds the largest diversity available, along with a rich bibliography and herbariums, offering us the opportunity to document and double check the identity of a cultivar, consolidating the expertise of ampelographers. The work is carried out in several stages, from verifying the existence of a variety in a small region, through to rehabilitation. During this session, the authors present the process that leads to the official registration of a variety. After this, IFV selection center takes over to initiate the process of selection and propagation. A specific focus within regions such as the Alps, Champagne and the South-West will provide details of the full procedure. Bia, Bouysselet, Chardonnay rose, Mecle and the aptly named Tardif, are some of the cultivars that have followed this procedure. Furthermore, a recent regulation established by INAO on “varieties of interest for adaptation purposes” might boost uptake by growers. Since 2006, 36 historical cultivars have been registered. Most of these have been neglected in the past due to late maturity, lack of sugar and high titratable acidity at harvest time. Such characteristics are today considered as positive qualities, not only in mitigation of the effects of climate change, but also as an opportunity for restoring diversity…

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Hexose efflux from the peeled grape berry

After the onset of grape berry ripening, phloem unloading follows an apoplasmic route into the mesocarp tissue. In the apoplast, most of the unloaded sucrose is cleaved by cell wall invertases

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.