WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Wine shaking during transportation: influence on the analytical and sensory parameters of wine

Wine shaking during transportation: influence on the analytical and sensory parameters of wine

Abstract

According to OIV reports, annual world wine consumption fluctuated around 240-245 mln hL over the past decade. The general market globalization has led to the situation when almost half of the consumed wine is exported to other countries. Of this volume, more than 60 mln hL are bottled still and sparkling wines.

Transportation of bottled wine involves temperature changes, shaking and vibrations. The impact of the two last factors on the wine quality is currently not well understood. Some experts consider wine to be a robust product that easily withstands such mechanical stress. Other wine professionals argue that transportation may affect the wine quality, especially of high price segment products. Moreover, there is a common belief that wine needs a few days of “rest” after transportation before its consumption.

In this study, we summarized the current knowledge about the impact of transportation on wine parameters. In addition, we conducted our experiment with rosé wines, which were subjected to transportation simulations. We used young and aged Pinot Noir wines to compare their sensitivity to mechanical stress. Wine bottles were placed horizontally in cartons and shaken periodically (2 hours per day) for 2 and 7 weeks. Then the wines were analyzed and compared to non-shaken control samples.

As a result of the experiment, differences were found in the following basic wine parameters between shaken and control samples: oxygen content in the bottle’s headspace; free SO2 level (after 2 weeks). The examination of wine aroma composition included the analysis of varietal (terpenes, C13-norisoprenoids) and fermentation aromas (esters, higher alcohols and acids), as well as low molecular weight sulfur compounds (H2S, MeSH, EtSH, etc). Only some of the studied compounds differed between the shaken and control wine samples. These variations did not considerably impact the overall perception of wine aromas. Thus, sensory analysis did not reveal significant differences between the shaken and control wines in triangle tests.

Another aspect of this work is related to the development of a physical model, which can evaluate the total energy transferred to a wine bottle during transportation. This concept can assist the wine industry as well as further research, as more studies are needed on the behavior of various wines during transportation. Thus, this model can be used to explain and compare the results of different experiments.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Andrii Tarasov, Elena Zanella, Christoph Schuessler, Doris Rauhut, Valeri Lozovski, Rainer Jung

Presenting author

Andrii Tarasov – Department of Enology, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany

Department of Enology, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany | Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany | Institute of High Technologies, T. Shevchenko National University of Kyiv, Kyiv, 02033, Ukraine

Contact the author

Keywords

Wine – transportation – shaking – sensory – physical model

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Caractérisation des terroirs viticoles champenois

The Champagne vineyard extends over 35,300 ha under the Appellation d’Origine Contrôlée, of which 30,000 are in production. It mainly covers 3 departments: in order of importance, Marne (68% of the appellation area), Aube (22%) and Aisne (10%), and more anecdotally Haute Marne and Seine and Mame. It is a young vineyard (for more than half of the surface, the winegrowers have the experience of only one generation of vines), and fragmented (more than half of the exploitations extend over less than 1 ha; the average size of a cadastral parcel is 12 ares).

Impact of soil-applied and foliar-applied nitrogen on grape and wine composition

Foliar application of urea may be an efficient way to alter grape and wine composition without increasing vine vigor. However, we know little about the impact of this practice on phenolic compounds and yeast assimilable nitrogen (YAN). Adequate YAN is required for an efficient and complete fermentation, while phenolics are particularly important for the sensory profile of red wines. The goal of this study is to test the impact of foliar urea application at veraison, compared to the traditional soil-applied nitrogen fertilization early in the season, on Syrah berry and wine composition in field conditions.