Terroir 2014 banner
IVES 9 IVES Conference Series 9 A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

Abstract

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.

These results have been converted to multilayer web services which are presented with a web map application (http://www.geologie.ac.at/en/research-development/mapping/substrate-floor/naturraum-carnuntum/).

The web map gives access to grouped thematic layers which represent climatic parameters (e.g. HUGLIN-Index, risk of frost), soil physics (e.g. available water capacity), soil chemistry and nutrients, rock geochemistry, geology, mineralogy and apparent resistivity maps. Using the web map interface one is able navigate on-screen to areas of interest and select the desired layers in any combination and transparency for display on aerial images. As the study results are made available to winemakers of the region and to the general public, the web map shall primarily serve as an information tool but is also intended to promote and communicate scientific research for the exploration of winegrowing regions.

The functions of the web map focus on the evaluation of the vertical and lateral variations of rocks and soils. In the study area more than 200 samples were taken by drilling or at sampling pits and analysed for grainsize distribution, clay mineral and bulk mineral content and whole rock geochemistry. By exploratory data analysis of the sample data the parameters were used to compare regional areas and lithostratigraphic units with graphs and descriptive statistics. The results of the exploratory data analysis contribute to the characterization of the stratigraphic units and the zoning of the study region.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Maria HEINRICH (1), Ingeborg WIMMER-FREY (1), Heinz REITNER (1), Josef EITZINGER (2), Johann GRASSL (3), Gerhard HOBIGER (1), Erwin MURER (4), Herbert PIRKL (5), Julia RABEDER (1), Johann REISCHER (1), Martin SCHIEGL (1) AND Heide SPIEGEL (6)

(1) Geological Survey of Austria, Vienna, Austria,
(2) University of Natural Resources and Applied Life Sciences, Vienna, Austria, 
(3) Carnuntum Wine Region Cooperation, Bruck an der Leitha, Austria,
(4) Federal Agency for Water Management, Petzenkirchen, Austria, 
(5) Technical Office for Geology, Vienna, Austria, 6 Austrian Agency for Health and Food Safety, Vienna, Austria 

Contact the author

Keywords

Carnuntum, Web Map, Mineralogy, Geochemistry, Grainsize Distribution

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.