Terroir 2014 banner
IVES 9 IVES Conference Series 9 A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

Abstract

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.

These results have been converted to multilayer web services which are presented with a web map application (http://www.geologie.ac.at/en/research-development/mapping/substrate-floor/naturraum-carnuntum/).

The web map gives access to grouped thematic layers which represent climatic parameters (e.g. HUGLIN-Index, risk of frost), soil physics (e.g. available water capacity), soil chemistry and nutrients, rock geochemistry, geology, mineralogy and apparent resistivity maps. Using the web map interface one is able navigate on-screen to areas of interest and select the desired layers in any combination and transparency for display on aerial images. As the study results are made available to winemakers of the region and to the general public, the web map shall primarily serve as an information tool but is also intended to promote and communicate scientific research for the exploration of winegrowing regions.

The functions of the web map focus on the evaluation of the vertical and lateral variations of rocks and soils. In the study area more than 200 samples were taken by drilling or at sampling pits and analysed for grainsize distribution, clay mineral and bulk mineral content and whole rock geochemistry. By exploratory data analysis of the sample data the parameters were used to compare regional areas and lithostratigraphic units with graphs and descriptive statistics. The results of the exploratory data analysis contribute to the characterization of the stratigraphic units and the zoning of the study region.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Maria HEINRICH (1), Ingeborg WIMMER-FREY (1), Heinz REITNER (1), Josef EITZINGER (2), Johann GRASSL (3), Gerhard HOBIGER (1), Erwin MURER (4), Herbert PIRKL (5), Julia RABEDER (1), Johann REISCHER (1), Martin SCHIEGL (1) AND Heide SPIEGEL (6)

(1) Geological Survey of Austria, Vienna, Austria,
(2) University of Natural Resources and Applied Life Sciences, Vienna, Austria, 
(3) Carnuntum Wine Region Cooperation, Bruck an der Leitha, Austria,
(4) Federal Agency for Water Management, Petzenkirchen, Austria, 
(5) Technical Office for Geology, Vienna, Austria, 6 Austrian Agency for Health and Food Safety, Vienna, Austria 

Contact the author

Keywords

Carnuntum, Web Map, Mineralogy, Geochemistry, Grainsize Distribution

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

“Q & A” of the european commission for labeling and desalcoholization for wines: european wine “soft-law”?

Recently, the European Commission seems to have inaugurated a new mechanism for regulating the wine sector. Through two communications, articulated in the form of “Questions & Answers”, concerning the new rules for labeling (24.11.2023) and dealcoholization of wine (15.01.2024), the Commission is not simply “explaining” the new rules but, in an approach close to the theory of “Circulaire Normative” established in comparative law, chooses among different interpretations and even adds Praeter Legem constraints.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

The effect of ecological conditions on the germination of pollen, fecundation and yield of some grapevine cultivars in Skopje region, Republic of Macedonia

The ecological conditions (climatic factors and soil) during the whole year, and especially before flowering and during the time of flowering, have a great influence on the functional ability of pollen, the pollination, the fecundation and the yielding potential of the cultivars of grapevine.

Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

A study of the physiological and agronomical behaviour of the vine (cv. Chasselas) was conducted between 2001 and 2003 by the Swiss Federal Research Station for Plant Production at Changins (Agroscope RAC Changins) on various wine-growing farms (terroirs) in the Canton of Vaud (Switzerland), as part of a study project on Vaudois