Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 Temperature effects on the biosynthesis of aroma compounds in glera grapes

Temperature effects on the biosynthesis of aroma compounds in glera grapes

Abstract

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera. 

The trial was carried out in a commercial vineyard planted on a steep slope in the Valdobbiadene area (North-East of Italy). Three sites were selected at three different altitudes, ranging from 200 m a.s.l. to 380 m a.s.l. In each site air and berry temperature were constantly monitored during the ripening period. Starting from veraisón, grape samples were collected from each site approximately every 10 days, and then analyzed to determine the ripening level (soluble solids, acidity, pH), the amount of aroma volatile compounds and the expression of some key genes involved in the terpenoid biosynthesis. 

Preliminary data collected in 2012 highlighted the strong influence that altitude exerts on both air temperature and fruit temperature during the ripening period. The lowest site recorded the lowest minimum night temperatures, about 2°C lower than the medium and high sites, and consequently the grape ripening in this site was notably delayed compared to the medium and high sites. A similar delay was not observed in the synthesis of aroma compounds. At harvesting, the three principal classes of compounds (terpenes, norisoprenoids and benzenoids) showed lower levels in the low site. However, comparing grape samples from the three sites at the same level of ripeness, the low one displayed significantly higher amounts for all the classes of aromas. 

Preliminary results from gene expression analysis showed that the linalool synthase VvPNLinNer1 was more expressed in samples collected from the medium site. This result correlated with the higher accumulation of linalool plus its derivatives in this site.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Federica GAIOTTI (1), Fabiola MATARESE (2), Nicola BELFIORE (1), Fabrizio BATTISTA (1), Claudio D’ONOFRIO (2), Diego TOMASI (1)

(1) CRA Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di Ricerca per la Viticoltura, Viale XXVII Aprile 26, 31015 Conegliano (TV) – Italy 
(2) Department of Agriculture, Food and Environment – University of Pisa – Via del Borghetto 80, 56124 Pisa – Italy

Contact the author

Keywords

aroma compounds, temperature, altitude, climate

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Cartography of « Terroir Units » is a Tool to Improve the Ré Island Vineyard Management (France)

A study of « terroirs » was achieved from 2003 to 2005 in the whole vineyard of the Ré island (17, France). Over more than 1,990 ha, a cartography at the 1/10.000 scale, including characterization of climatic, pedological, geological and hydrogeological components of « Basic Terroir Units » (B.T.U.) was made. Also, a survey among wine growers was conducted. All data were treated together in a G.I.S. connected to a data base. 22 kinds of map were built (B.T.U. and components, soil water reserve, vine functioning potentials, varieties, rootstocks, viticultural practices and soil management).

Smoke taint in wine – what now?

The frequency of bushfires close to wine regions around the world has increased in the last two decades. The economic losses incurred when grapes and wines are discarded due to ‘smoke taint’ are substantial (i.e., hundreds of millions of dollars). Efforts to mitigate and ameliorate smoke taint are therefore crucial. Chardonnay, rosé and cabernet sauvignon wines made from grapes exposed to smoke during the 2020 wildfires in eastern Australia were subjected to various amelioration techniques: the addition of activated carbons, molecularly imprinted polymers (mips), and a proprietary resin (either directly, or following membrane filtration); spinning cone column (scc) distillation; and finally, transformation into vinegar.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines

Wine quality and safety are the main concerns of consumers and health agencies. Biogenic amines and polyamines, depending on their concentration and on individuals, in wine can constitute a potential public health concern due to their physiological and toxicological effects

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.