Terroir 2014 banner
IVES 9 IVES Conference Series 9 Time stability of visitors’ preferences for preserving the worldwide cultural landscape alto douro wine region

Time stability of visitors’ preferences for preserving the worldwide cultural landscape alto douro wine region

Abstract

The Alto Douro Wine Region (ADWR) was classified a world heritage site, specifically as a cultural landscape, by UNESCO, in 2001. The well known “Porto Wine” and other high quality wines are produced in the Douro region. As an attraction and touristic site, the cultural site has to meet the needs of more demanding visitors and to compete with a growing number of cultural sites, also classified by UNESCO. To achieve this goal, landscape managers and public authorities have much to profit from knowing and understanding visitors’ preferences regarding the attributes associated to its outstanding universal value. 

The goal of this paper is to enhance the knowledge about the preferences of the ADWR Portuguese’ visitors, considering the attributes that deserve preservation and consequently public attention. Using the choice experiments technique, six alternative choice sets were presented in a questionnaire in the year 2013. Data was collected from 249 useful surveys corresponding to 1,494 responses. Responses are analyzed by a random parameters or mixed logit model, taking into account the random preferences heterogeneity and the panel nature of the data. 

An additional and innovative issue of the article is to compare the results of the survey conducted in 2013 with previous evidence from own work conducted in 2008. The comparison of the results in two distinct periods of time is a novelty; moreover the question of preferences’ stability has rarely been addressed in discrete choices models. Nevertheless, in the context of changing living conditions and expectations of Portuguese consumers plunged into an economic crisis, this subject is clearly relevant.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Lina LOURENÇO-GOMES (1), Lígia, M. C. PINTO (2), João REBELO (1)

(1) Department of Economics, Sociology and Management (DESG), Centre for Transdisciplinary Development Studies (CETRAD), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real Portugal 
(2) School of Economics and Management (EEG), Applied Microeconomics Research Unit (NIMA), University of Minho, Address; Campus de Gualtar, 4710-057 Braga, Portugal

Contact the author

Keywords

Preferences’ stability; applied microeconomics; discrete choice models; cultural economics; consumer preferences

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

La vinicultura en regiones tropicales Brasileras

La producción mundial de uvas para mesa es obtenida de viñedos localizados entre los paralelos 30 y 50º Latitud Norte y 30 y 40º Latitud Sur.

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions.

Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

The cultivation of grapes, can be accomplished with the use of different systems and practices of agricultural management, the choice of the system to be followed in the vineyard, depends on the conditions of available resources, these being: natural, economic, social, cultural and territorial. As well, it is relevant to know the characteristics of the soil of the vineyard. In the last decade, has been recurrent use of agricultural practices which date back to milinares traditions, with the aim of promoting a recovery of soil and lead the management of cultivation with less damage to the ecosystem. The study here, aimed to quantify the environmental impacts caused in the use of nutrients in conventional tillage and of grapes in the biodynamic agricultural properties in the state of Rio Grande do Sul- Brazil.

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.