Terroir 2014 banner
IVES 9 IVES Conference Series 9 Time stability of visitors’ preferences for preserving the worldwide cultural landscape alto douro wine region

Time stability of visitors’ preferences for preserving the worldwide cultural landscape alto douro wine region

Abstract

The Alto Douro Wine Region (ADWR) was classified a world heritage site, specifically as a cultural landscape, by UNESCO, in 2001. The well known “Porto Wine” and other high quality wines are produced in the Douro region. As an attraction and touristic site, the cultural site has to meet the needs of more demanding visitors and to compete with a growing number of cultural sites, also classified by UNESCO. To achieve this goal, landscape managers and public authorities have much to profit from knowing and understanding visitors’ preferences regarding the attributes associated to its outstanding universal value. 

The goal of this paper is to enhance the knowledge about the preferences of the ADWR Portuguese’ visitors, considering the attributes that deserve preservation and consequently public attention. Using the choice experiments technique, six alternative choice sets were presented in a questionnaire in the year 2013. Data was collected from 249 useful surveys corresponding to 1,494 responses. Responses are analyzed by a random parameters or mixed logit model, taking into account the random preferences heterogeneity and the panel nature of the data. 

An additional and innovative issue of the article is to compare the results of the survey conducted in 2013 with previous evidence from own work conducted in 2008. The comparison of the results in two distinct periods of time is a novelty; moreover the question of preferences’ stability has rarely been addressed in discrete choices models. Nevertheless, in the context of changing living conditions and expectations of Portuguese consumers plunged into an economic crisis, this subject is clearly relevant.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Lina LOURENÇO-GOMES (1), Lígia, M. C. PINTO (2), João REBELO (1)

(1) Department of Economics, Sociology and Management (DESG), Centre for Transdisciplinary Development Studies (CETRAD), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real Portugal 
(2) School of Economics and Management (EEG), Applied Microeconomics Research Unit (NIMA), University of Minho, Address; Campus de Gualtar, 4710-057 Braga, Portugal

Contact the author

Keywords

Preferences’ stability; applied microeconomics; discrete choice models; cultural economics; consumer preferences

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils.

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Characterizing chemical influences of smoke on wine via novel application of 13c-labelled smoke

Smoke impact is an ongoing and growing issue for vintners across the globe, with the west coast of the U.S. and Australia being two of the largest wine industries impacted. Wine has shown to be especially sensitive to smoke exposure, often acquiring off-flavor sensory characteristics, such as “burnt rubber”, “ashy”, or other medicinal off-flavors.1 While several studies have examined the chemical composition of smoke influences on wine, some studies disagree on what compounds are having the largest impact on smell and flavor.2 This study is designed as a bottom-up approach to inventory the chemical compounds derived from smoke from a grassland-like fire that are potentially influencing wine chemical composition.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).