Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Abstract

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions. For that reason climate variability, with higher temperatures and higher water demands, may affect grape development and production. The aim of this work was to analyze the influence of the climatic characteristics on phenology within the DO. Twenty plots planted with Tempranillo (the main variety cultivated in the area) were analyzed from 2004 to 2012. The representativeness of those years was analyzed by comparing their characteristics with a longer series recorded from 1980 to 2012. The relationship between phenology and the different variables were confirmed with a multivariable analysis. While the dates during the time period showed high variability, on average, bud break was April 28th; bloom June 16th and veraison August 12th. Differences of up to 21 days in the dates were observed between years, with the earliest dates observed in dry years (2005, 2006 and to a lesser degree in 2009). On the other hand, later dates occurred in the wettest year of the period (2008). High correlations were found between veraison and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in in the central part of the DO. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

María C. Ramos (1), Gregory V. Jones (2), Jesús Yuste (3) 

(1) Dept Environment and Soil Science, University of Lleida, Spain 
(2) Dept Environmental Studies, South Oregon University, USA 
(3) Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain

Contact the author

Keywords

climate change, grapes, phenology, spatial and temporal variability, Tempranillo, water deficit

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The abbreviation AOC designates, since 1905 in France, wines which characteristics and reputation are due to a proper “terroir”. The delimitation of such “terroirs” consists in a technical and statutory procedure which has developed by steps.

Pioneering dynamic AgriVoltaics in viticulture: enhancing grapevine productivity, wine quality and climate protection through agronomical steering in a large-scale field study

Context and purpose of the study. Climate change threatens traditional winegrowing regions, with about 90% of areas like southern France at risk by the end of the century due to heatwaves and droughts.

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Simulating single band multispectral imaging from hyperspectral imaging: A study into the application of single band visible to near-infrared multispectral imaging for determining table grape quality

To be accepted by the market and consumers table grapes need to meet certain requirements in terms of physical and chemical quality parameters.