Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Abstract

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions. For that reason climate variability, with higher temperatures and higher water demands, may affect grape development and production. The aim of this work was to analyze the influence of the climatic characteristics on phenology within the DO. Twenty plots planted with Tempranillo (the main variety cultivated in the area) were analyzed from 2004 to 2012. The representativeness of those years was analyzed by comparing their characteristics with a longer series recorded from 1980 to 2012. The relationship between phenology and the different variables were confirmed with a multivariable analysis. While the dates during the time period showed high variability, on average, bud break was April 28th; bloom June 16th and veraison August 12th. Differences of up to 21 days in the dates were observed between years, with the earliest dates observed in dry years (2005, 2006 and to a lesser degree in 2009). On the other hand, later dates occurred in the wettest year of the period (2008). High correlations were found between veraison and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in in the central part of the DO. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

María C. Ramos (1), Gregory V. Jones (2), Jesús Yuste (3) 

(1) Dept Environment and Soil Science, University of Lleida, Spain 
(2) Dept Environmental Studies, South Oregon University, USA 
(3) Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain

Contact the author

Keywords

climate change, grapes, phenology, spatial and temporal variability, Tempranillo, water deficit

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Which heat test really represents the haze risk of a white Sauvignon wine ?

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days)

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

Climate change projections in serbian wine-growing regions

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario.

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

The relationship between wind exposure and viticultural performance of Vitis vinifera L. cv. Merlot in a coastal vineyard (South Africa)

The South Western Cape of South Africa is exposed to strong southerly and south easterly synoptic winds during the growth period of the grapevine. The development of sea breezes in the afternoon is also a phenomenon associated with the ripening period of grapes cultivated in this coastal area. Wind is one of the environmental variables having the greatest spatial variation but the implications of regular exposure to wind for the performance of the grapevine has not yet been determined for vineyards in the South Western Cape. This study was initiated to meet this need.
The study was conducted in a hedge-trellised vineyard of Vitis vinifera L. cv Merlot with north east – south west row direction. Thirty experimental sites, each consisting of 14 vines, were identified as being exposed to wind or sheltered based on hand-held anemometer readings during the 2001/2002 season. Four stationary anemometers were strategically positioned between the thirty sites. Stomatal conductance and leaf temperature were measured with a PP systems porometer. Vegetative and yield measurements were performed during the 2002/2003 season. The t-test of equal variance was used to determine significant differences in measured parameters between exposed and sheltered grapevines.
Stomatal conductance and leaf area were significantly reduced by exposure to wind. This was associated with a significant reduction in the leaf area of primary shoots, related to shorter shoots, but a significant augmentation of secondary shoot leaf number and area. The number of bunches per vine and yield were also reduced for exposed vines. The berry potassium content was significantly increased for exposed grapevines.
This demonstrates that exposure to wind can result in significant within-vineyard, and potentially between-vineyard, variability in grapevine physiology, vegetative growth, yield and berry composition, with implications for wine style and quality.