Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Abstract

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions. For that reason climate variability, with higher temperatures and higher water demands, may affect grape development and production. The aim of this work was to analyze the influence of the climatic characteristics on phenology within the DO. Twenty plots planted with Tempranillo (the main variety cultivated in the area) were analyzed from 2004 to 2012. The representativeness of those years was analyzed by comparing their characteristics with a longer series recorded from 1980 to 2012. The relationship between phenology and the different variables were confirmed with a multivariable analysis. While the dates during the time period showed high variability, on average, bud break was April 28th; bloom June 16th and veraison August 12th. Differences of up to 21 days in the dates were observed between years, with the earliest dates observed in dry years (2005, 2006 and to a lesser degree in 2009). On the other hand, later dates occurred in the wettest year of the period (2008). High correlations were found between veraison and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in in the central part of the DO. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

María C. Ramos (1), Gregory V. Jones (2), Jesús Yuste (3) 

(1) Dept Environment and Soil Science, University of Lleida, Spain 
(2) Dept Environmental Studies, South Oregon University, USA 
(3) Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain

Contact the author

Keywords

climate change, grapes, phenology, spatial and temporal variability, Tempranillo, water deficit

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Use of ultrasounds to accelerate aging on lees of red wines

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions.

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times

Effects of ethanol removal techniques on Nero d’Avola wine

Over the past two decades, climate change has contributed to an increase in sugar content in grape must, and consequently, in the ethanol levels of wines.

Mannoproteins extraction from wine lees using natural deep eutectic solvents

Wine lees can be a good source of yeast mannoproteins for both food and wine applications [1,2]. However, mannoprotein extraction from wine lees has not yet been scaled up to an industrial scale, mainly because of the limited cost-effectiveness ratio of the methods employed at the laboratory scale [2].

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.