Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Abstract

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions. For that reason climate variability, with higher temperatures and higher water demands, may affect grape development and production. The aim of this work was to analyze the influence of the climatic characteristics on phenology within the DO. Twenty plots planted with Tempranillo (the main variety cultivated in the area) were analyzed from 2004 to 2012. The representativeness of those years was analyzed by comparing their characteristics with a longer series recorded from 1980 to 2012. The relationship between phenology and the different variables were confirmed with a multivariable analysis. While the dates during the time period showed high variability, on average, bud break was April 28th; bloom June 16th and veraison August 12th. Differences of up to 21 days in the dates were observed between years, with the earliest dates observed in dry years (2005, 2006 and to a lesser degree in 2009). On the other hand, later dates occurred in the wettest year of the period (2008). High correlations were found between veraison and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in in the central part of the DO. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

María C. Ramos (1), Gregory V. Jones (2), Jesús Yuste (3) 

(1) Dept Environment and Soil Science, University of Lleida, Spain 
(2) Dept Environmental Studies, South Oregon University, USA 
(3) Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain

Contact the author

Keywords

climate change, grapes, phenology, spatial and temporal variability, Tempranillo, water deficit

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Conduite en Lys: résultats pendant la formation du système avec le cépage Loureiro dans la région des “Vinhos Verdes”

Dans la région des “Vinhos Verdes” les études sur les systèmes de conduite de la vigne sont très importantes et beaucoup de travaux ont été faits pendant les dernières années. Cet essai

Wine tannins: What place for grape seed?

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability.

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.