Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

Abstract

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions. For that reason climate variability, with higher temperatures and higher water demands, may affect grape development and production. The aim of this work was to analyze the influence of the climatic characteristics on phenology within the DO. Twenty plots planted with Tempranillo (the main variety cultivated in the area) were analyzed from 2004 to 2012. The representativeness of those years was analyzed by comparing their characteristics with a longer series recorded from 1980 to 2012. The relationship between phenology and the different variables were confirmed with a multivariable analysis. While the dates during the time period showed high variability, on average, bud break was April 28th; bloom June 16th and veraison August 12th. Differences of up to 21 days in the dates were observed between years, with the earliest dates observed in dry years (2005, 2006 and to a lesser degree in 2009). On the other hand, later dates occurred in the wettest year of the period (2008). High correlations were found between veraison and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in in the central part of the DO. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

María C. Ramos (1), Gregory V. Jones (2), Jesús Yuste (3) 

(1) Dept Environment and Soil Science, University of Lleida, Spain 
(2) Dept Environmental Studies, South Oregon University, USA 
(3) Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain

Contact the author

Keywords

climate change, grapes, phenology, spatial and temporal variability, Tempranillo, water deficit

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Perceptions of livestock integration in South African vineyards

Context and purpose of the study. Conventional viticulture relies heavily on synthetic inputs (fertilizers, pesticides), as well as mechanization to manage pests, weeds, and diseases and maximize yields.

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Application of new genomic technologies to improve the pathogen resistance of two local cultivars from Veneto region: Corvina and Garganega

Grapevine (Vitis spp.) is a globally significant fruit crop and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands.

How different SO2 doses impact amino acid and volatile profile of white wines

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months.