Terroir 2014 banner
IVES 9 IVES Conference Series 9 A generic method to analyze vine water deficit continuously

A generic method to analyze vine water deficit continuously

Abstract

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Our work proposes a quantitative method to characterize vine water deficit variations in a continuous fashion. Combining sap flow and climatic raw data, the framework uses expert knowledge and mathematical modeling to characterize dry soil crop coefficient (KcB) and automatically compute a daily water deficit index Ks. As a case study we used an experimental design set in French vineyards where contrasted vine water deficit profiles were obtained by using differential irrigation treatments.

We analyzed Tr/ETref ratio variations to identify the timing and value of maximal KcB. After that preliminary step, we computed and aggregated Ks profiles for each treatment and compared irrigation effects on Ks profiles. Because sap flow and climatic sensors are installed outdoor, determination of maximal KcB value is particularly sensitive to environmental variations. As such, we studied the effect of measurement uncertainties on KcB computation and Ks profile by imposing variations in the timing and value of KcB. Implications and perspectives to improve irrigation practices are discussed.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Scholasch T. (1), Charnomordic B. (2), Hilgert N. (2)

(1) Fruition Sciences, SAS. MIBI, 672 rue du Mas de Verchant 34000 Montpellier,France 
(2) INRA-SupAgro, UMR 729 MISTEA, F-34060 Montpellier, France 

Keywords

sap flow, Ks, water use, irrigation, dry soil crop coefficient

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

Evolution of chemical pattern related to Valpolicella aroma ‘terroir’ during bottle aging

Valpolicella is a famous Italian wine-producing region. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years require wines. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle. In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.