Terroir 2014 banner
IVES 9 IVES Conference Series 9 A generic method to analyze vine water deficit continuously

A generic method to analyze vine water deficit continuously

Abstract

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Our work proposes a quantitative method to characterize vine water deficit variations in a continuous fashion. Combining sap flow and climatic raw data, the framework uses expert knowledge and mathematical modeling to characterize dry soil crop coefficient (KcB) and automatically compute a daily water deficit index Ks. As a case study we used an experimental design set in French vineyards where contrasted vine water deficit profiles were obtained by using differential irrigation treatments.

We analyzed Tr/ETref ratio variations to identify the timing and value of maximal KcB. After that preliminary step, we computed and aggregated Ks profiles for each treatment and compared irrigation effects on Ks profiles. Because sap flow and climatic sensors are installed outdoor, determination of maximal KcB value is particularly sensitive to environmental variations. As such, we studied the effect of measurement uncertainties on KcB computation and Ks profile by imposing variations in the timing and value of KcB. Implications and perspectives to improve irrigation practices are discussed.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Scholasch T. (1), Charnomordic B. (2), Hilgert N. (2)

(1) Fruition Sciences, SAS. MIBI, 672 rue du Mas de Verchant 34000 Montpellier,France 
(2) INRA-SupAgro, UMR 729 MISTEA, F-34060 Montpellier, France 

Keywords

sap flow, Ks, water use, irrigation, dry soil crop coefficient

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures

Effect of “Terroir” on quanti-qualitative paramethers of “vino nobile di Montepulciano”

In this last ten years period, there has been many integrated and interdisciplinary studies to determine the aptitude of different zones to viticulture (Lulli et al., 1989 ; Costantini, 1992 ; Fregoni et al., 1992). The researches needed some différent knowledges about environment characteristics (soil, climate), ecology, vineyard management, vine genetic, winemaking and sensory analysis. The interaction of all these knowledge produced the assessment about the environmental vocation (Scienza et al., 1992). By means of this metodology, the “viticultural vocation” joined the word “zoning”, that is the territory parting for its ecopedological and geographical characteristics in relation to adaptative answer of winegrape (Morlat, 1989).

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.