Terroir 2014 banner
IVES 9 IVES Conference Series 9 A generic method to analyze vine water deficit continuously

A generic method to analyze vine water deficit continuously

Abstract

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Our work proposes a quantitative method to characterize vine water deficit variations in a continuous fashion. Combining sap flow and climatic raw data, the framework uses expert knowledge and mathematical modeling to characterize dry soil crop coefficient (KcB) and automatically compute a daily water deficit index Ks. As a case study we used an experimental design set in French vineyards where contrasted vine water deficit profiles were obtained by using differential irrigation treatments.

We analyzed Tr/ETref ratio variations to identify the timing and value of maximal KcB. After that preliminary step, we computed and aggregated Ks profiles for each treatment and compared irrigation effects on Ks profiles. Because sap flow and climatic sensors are installed outdoor, determination of maximal KcB value is particularly sensitive to environmental variations. As such, we studied the effect of measurement uncertainties on KcB computation and Ks profile by imposing variations in the timing and value of KcB. Implications and perspectives to improve irrigation practices are discussed.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Scholasch T. (1), Charnomordic B. (2), Hilgert N. (2)

(1) Fruition Sciences, SAS. MIBI, 672 rue du Mas de Verchant 34000 Montpellier,France 
(2) INRA-SupAgro, UMR 729 MISTEA, F-34060 Montpellier, France 

Keywords

sap flow, Ks, water use, irrigation, dry soil crop coefficient

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Vine responses to two irrigation systems in the region of Vinhos Verdes

In this work we try to know the influence of two irrigation systems (Drip and Micro – jet ) with the same levels of water applied in an experimental vineyard in the region of Felgueiras.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

First application of an original methodology created to overcome conflicts between stakeholders in an important wine-growing territory: methodology, results, and perspectives in the application of sustainability EME4.1C

Considering the previous research and activities, also, on Sustainability EME4.1C which, as widely known, considers in a harmonious chain all the factors material, immaterial, moral and spiritual related to all aspects environmental, economic, social, existential, relational, ethical, technical and “MetaEthic” indexed 4.1C

The effect of short and long-term water deficit on physiological performance and leaf microbiome of different rootstock and scion combinations

Climate change, particularly drought stress, threatens viticulture sustainability. Understanding scion-rootstock interactions and their link to the grapevine microbiome is key to improving vine health, productivity, and drought resilience.

Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada

The use of cover crops in vineyards has been encouraged by positive effects on wine grape yield and sensory attributes, and improved soil function. This study examined the efficacy of three alleyway and three undervine cover crop treatments in an organic vineyard in the semiarid Okanagan Valley, Canada in 2021.