Terroir 2014 banner
IVES 9 IVES Conference Series 9 A generic method to analyze vine water deficit continuously

A generic method to analyze vine water deficit continuously

Abstract

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Our work proposes a quantitative method to characterize vine water deficit variations in a continuous fashion. Combining sap flow and climatic raw data, the framework uses expert knowledge and mathematical modeling to characterize dry soil crop coefficient (KcB) and automatically compute a daily water deficit index Ks. As a case study we used an experimental design set in French vineyards where contrasted vine water deficit profiles were obtained by using differential irrigation treatments.

We analyzed Tr/ETref ratio variations to identify the timing and value of maximal KcB. After that preliminary step, we computed and aggregated Ks profiles for each treatment and compared irrigation effects on Ks profiles. Because sap flow and climatic sensors are installed outdoor, determination of maximal KcB value is particularly sensitive to environmental variations. As such, we studied the effect of measurement uncertainties on KcB computation and Ks profile by imposing variations in the timing and value of KcB. Implications and perspectives to improve irrigation practices are discussed.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Scholasch T. (1), Charnomordic B. (2), Hilgert N. (2)

(1) Fruition Sciences, SAS. MIBI, 672 rue du Mas de Verchant 34000 Montpellier,France 
(2) INRA-SupAgro, UMR 729 MISTEA, F-34060 Montpellier, France 

Keywords

sap flow, Ks, water use, irrigation, dry soil crop coefficient

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character. During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

How sensory quality of wines can be accessed as a trait in MAS grape vine breeding

In the context of the global crises of global warming, biodiversity and pollution, current agricultural practices need to be reconsidered.

Zonage viticole des surfaces potentielles dans la vallée Centrale de Tarija (Bolivie)

La présente étude de zonage viticole a été faite dans la région de la vallée Central de Tarija(VCT), dans la ville de Tarija, au Sud de la Bolivie; une région avec plus de 400 années de tradition qui présente une vitiviniculture de haute qualité. La Vallée possède une surface total de 332 milles ha.; existant des vignobles entre 1660 y 2300 m.s.n.m. et dans ce rang d’altitude il existe 91 mille ha.

Effect of cytokinin and auxin application on double cropping performance in Vitis vinifera: preliminary findings

Double cropping is a novel technique, driven by the extension of the growing season caused by global warming.

Supporting wine production from vineyard to glass through secure IoT devices and blockchain

Temperature fluctuations can significantly affect the chemical composition of wine and in turn its taste and aromas.