Terroir 2014 banner
IVES 9 IVES Conference Series 9 A generic method to analyze vine water deficit continuously

A generic method to analyze vine water deficit continuously

Abstract

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Our work proposes a quantitative method to characterize vine water deficit variations in a continuous fashion. Combining sap flow and climatic raw data, the framework uses expert knowledge and mathematical modeling to characterize dry soil crop coefficient (KcB) and automatically compute a daily water deficit index Ks. As a case study we used an experimental design set in French vineyards where contrasted vine water deficit profiles were obtained by using differential irrigation treatments.

We analyzed Tr/ETref ratio variations to identify the timing and value of maximal KcB. After that preliminary step, we computed and aggregated Ks profiles for each treatment and compared irrigation effects on Ks profiles. Because sap flow and climatic sensors are installed outdoor, determination of maximal KcB value is particularly sensitive to environmental variations. As such, we studied the effect of measurement uncertainties on KcB computation and Ks profile by imposing variations in the timing and value of KcB. Implications and perspectives to improve irrigation practices are discussed.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Scholasch T. (1), Charnomordic B. (2), Hilgert N. (2)

(1) Fruition Sciences, SAS. MIBI, 672 rue du Mas de Verchant 34000 Montpellier,France 
(2) INRA-SupAgro, UMR 729 MISTEA, F-34060 Montpellier, France 

Keywords

sap flow, Ks, water use, irrigation, dry soil crop coefficient

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The origin and the discovery of “terroir”

Le mot “terroir” dérive du latin “terra”, mais déjà les Romains l’indiquaient comme “locus” ou”loci”, c’est-à-dire un lieu ayant le “genius”destiné à la production d’un produit d’excellente qualité.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Étude de la composante climatique du terroir viticole en Val de Loire : relation avec les facteurs physiques du milieu

The research carried out by the URVV of the INRA center in Angers aims to develop a methodology for the integrated characterization of the natural factors of viticultural terroirs, representative of the operating conditions of the vine and the sensory differences of the wines. In this context, the concept of Basic Terroir Unit (UTB) has been developed. The UTB represents a viticultural surface of variable geographical extension, defined as the association in a given place of a geological, pedological and landscape component, Morlat (1989), Riou et al. (1995).

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed.