Terroir 2014 banner
IVES 9 IVES Conference Series 9 Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

Abstract

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way. This paper purposes to present an evaluation of sustainability, adopting a territorial approach. It is designed as a multi-case study of three Brazilian terroirs: Vale dos Vinhedos, Campanha Gaúcha and Vale do Rio São Francisco. The Vale dos Vinhedos was the first AOC in Brazil; the other two are engaged in ongoing projects. The data are extracted from literature reviews, technical visits and interviews. The three terroirs are analyzed in terms of five perspectives of sustainability (political, social, environmental, economic and territorial). Some examples of indicators include: the political perspective reveals the importance of associations to local actors in discussions about the terroir; the studies carried out to recognize the AOCs help to identify environmental risks and fragilities; the terroir highlights and values territorial resources. It is important to understand that this approach is not developed in order to undermine the environmental perspective, but to help to create relations in a territorial context. Evaluating sustainability is a challenge that requires the development of theoretical and methodological frameworks. In this sense, the territorial approach is not a definitive answer, but another way to understand this issue and to propose new projects to enhance terroir and its sustainability. 

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Shana SABBADO FLORES (1), Rosa Maria VIEIRA MEDEIROS (2)

(1) Instituto Federal do Rio Grande do Sul (IFRS – campus Restinga), Porto Alegre, Brazil – Chaire-UNESCO “Culture & Traditions du Vin” / Université de Bourgogne, Dijon, France
(2) Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil 

Contact the author

Keywords

sustainable viticulture, Vale dos Vinhedos, Campanha Gaúcha, Vale do Rio São Francisco, territorial approach, terroir, sustainability, Brazilian viticulture 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

New genomic techniques, plant variety rights and wine law

The paper discusses potential implications of New Genomic Technologies (NGTs) on European Plant Variety and Wine Law.