Terroir 2014 banner
IVES 9 IVES Conference Series 9 Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

Abstract

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way. This paper purposes to present an evaluation of sustainability, adopting a territorial approach. It is designed as a multi-case study of three Brazilian terroirs: Vale dos Vinhedos, Campanha Gaúcha and Vale do Rio São Francisco. The Vale dos Vinhedos was the first AOC in Brazil; the other two are engaged in ongoing projects. The data are extracted from literature reviews, technical visits and interviews. The three terroirs are analyzed in terms of five perspectives of sustainability (political, social, environmental, economic and territorial). Some examples of indicators include: the political perspective reveals the importance of associations to local actors in discussions about the terroir; the studies carried out to recognize the AOCs help to identify environmental risks and fragilities; the terroir highlights and values territorial resources. It is important to understand that this approach is not developed in order to undermine the environmental perspective, but to help to create relations in a territorial context. Evaluating sustainability is a challenge that requires the development of theoretical and methodological frameworks. In this sense, the territorial approach is not a definitive answer, but another way to understand this issue and to propose new projects to enhance terroir and its sustainability. 

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Shana SABBADO FLORES (1), Rosa Maria VIEIRA MEDEIROS (2)

(1) Instituto Federal do Rio Grande do Sul (IFRS – campus Restinga), Porto Alegre, Brazil – Chaire-UNESCO “Culture & Traditions du Vin” / Université de Bourgogne, Dijon, France
(2) Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil 

Contact the author

Keywords

sustainable viticulture, Vale dos Vinhedos, Campanha Gaúcha, Vale do Rio São Francisco, territorial approach, terroir, sustainability, Brazilian viticulture 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Untangle berry shrivel environmental risk factors and quantify symptoms with AI – GeomAbs meets BAISIQ

Berry Shrivel (BS, Traubenwelke) is a sugar accumulation disorder of grapevine of unknown causes, having a great negative impact on grape quality and incalculable risks for yield losses, and for which no reliable curative practices are available.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Tracking of sulfonated flavanol formation in a model wine during storage

The aim of this work was to determine the reaction products of bisulfite with grape seed flavanols and changes therein over different storage conditions in a model wine

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.