Terroir 2014 banner
IVES 9 IVES Conference Series 9 Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

Abstract

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way. This paper purposes to present an evaluation of sustainability, adopting a territorial approach. It is designed as a multi-case study of three Brazilian terroirs: Vale dos Vinhedos, Campanha Gaúcha and Vale do Rio São Francisco. The Vale dos Vinhedos was the first AOC in Brazil; the other two are engaged in ongoing projects. The data are extracted from literature reviews, technical visits and interviews. The three terroirs are analyzed in terms of five perspectives of sustainability (political, social, environmental, economic and territorial). Some examples of indicators include: the political perspective reveals the importance of associations to local actors in discussions about the terroir; the studies carried out to recognize the AOCs help to identify environmental risks and fragilities; the terroir highlights and values territorial resources. It is important to understand that this approach is not developed in order to undermine the environmental perspective, but to help to create relations in a territorial context. Evaluating sustainability is a challenge that requires the development of theoretical and methodological frameworks. In this sense, the territorial approach is not a definitive answer, but another way to understand this issue and to propose new projects to enhance terroir and its sustainability. 

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Shana SABBADO FLORES (1), Rosa Maria VIEIRA MEDEIROS (2)

(1) Instituto Federal do Rio Grande do Sul (IFRS – campus Restinga), Porto Alegre, Brazil – Chaire-UNESCO “Culture & Traditions du Vin” / Université de Bourgogne, Dijon, France
(2) Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil 

Contact the author

Keywords

sustainable viticulture, Vale dos Vinhedos, Campanha Gaúcha, Vale do Rio São Francisco, territorial approach, terroir, sustainability, Brazilian viticulture 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

La Région Délimitée du Douro et le Vin de Porto — un terroir historique —

The viticulture of the Douro Delimited Region, one of the heirs of ancestral viticulture, traditionally empirical and of quality, while integrating modernity and contemporary tools, respects and has always present the principles on which it was developed.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.