Terroir 2014 banner
IVES 9 IVES Conference Series 9 Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Abstract

Nowadays biodiversity loss is considered as a prior environmental issue. Agricultural landscapes are particularly concerned, mainly through the specialization and intensification of farming activities which lead, at a larger scale, to landscape simplification. Landscape management would be a good means to halt biodiversity loss, but large-scale studies remain rare. The life+ project BioDiVine aims to understand biodiversity dynamics and promote sustainable conservation actions at this scale in viticulture. 

Seven demonstration sites, in France, Spain and Portugal, followed common protocols in order to quantify biodiversity in vineyard plots and evaluate its possible link with the surrounding landscape. In each area, arthropods were monitored on 25 selected plots, from 2011 to 2013. Arthropods were sampled by non-selective trapping stations set into vines and semi-natural habitats (2011) and exclusively inside vine plots (2012-2013). They were sorted out using the Rapid Biodiversity Assessment method. Then, abundance and richness indices were calculated. The landscape surrounding each trapping station (400m radius) was characterized through a GIS database. Then, indices such as proportion of semi-natural habitats have been calculated. 

Semi-natural habitats show higher arthropods richness than vineyards, with a significant difference in richness values of 20 to 50%, depending on demonstration sites. On all French demonstration sites, a significant positive correlation was shown between the proportion of semi-natural habitats in a 400 m buffer area and the arthropods richness inside the vine plot. These results support the action program of the BioDiVine project, which consists in encouraging landscape management actions such as planting hedgerows or restoring semi-natural elements connectivity. This can be an efficient way to support biodiversity and promote environmental-friendly wine production. Yet, these actions have to be collectively managed to reach their maximum efficiency, and require a huge coordination effort.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Josépha GUENSER (1), Séverine MARY (1), Benjamin PORTE (2), Joël ROCHARD (2), Maarten van HELDEN (3)

(1) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 
(2) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France. 
(3) Bordeaux Sciences Agro, ISVV, 1 Cours du Général de Gaulle, 33170 Gradignan, France.

Contact the author

Keywords

Biodiversity, GIS, landscape management, vineyard

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The film-forming Pichia spp. in a winemaker’s toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must

Certain yeast species belonging to the Pichia genus are known to form a distinctive film on grape must and wine. In a mixed-culture type fermentation, Pichia spp. (P. kluyveri in particular) are known to impart beneficial oenological attributes. In this study, we report on an easy isolation method of Pichia spp. from grape must by exploiting their film-forming capacity on media containing 10% ethanol. We isolated and identified two Pichia species, namely Pichia kudriavzevii and Pichia kluyveri, and subsequently co-inoculated them with Saccharomyces cerevisiae to ferment Gewürztraminer musts. Noteworthy differences included a significant increase in the 2-phenethyl acetate levels with the P. kluyveri co-fermentation and a general increase in ethyl esters with the P. kudriavzevii co-fermentation. Both Pichia co-inoculations yielded higher levels of glycerol in the final wines. Based on all the wine parameters we tested, the P. kluyveri strain that was isolated performed similarly to a commercial P. kluyveri strain.

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

Stable or dynamic? How phenotypic plasticity could be key to select for grapevine adaptation?

Climate change will require the adaptation of agricultural systems and among the different means of adaptation, changing plant material is a promising strategy. In viticulture, different levels of diversity are currently exploited: clonal and varietal diversity for rootstocks and scions. A huge quantity of research aims to evaluate different genotypes in different environmental conditions to identify which ones are the best adapted and the most tolerant to future environmental conditions.

Reviewing the geometry of terraces in the Douro region towards sustainable viticulture

The Douro demarcated region constitutes just over 50% of the area of mountain vineyard in the world, i.e., vineyards with slope gradients of 30% or above. Among the different (terraced) vineyard layouts, the formerly preferred wider terraces supporting two rows of vines and the currently advocated narrower single vine row, dominate the vineyards’ planting layout. The slope of these terraces, in other words, the supporting earth ramp, is a key element in these vineyards’ construction.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory