terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Abstract

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory compliance, and the expanding non-alcoholic market [1-3]. While traditional winemaking naturally produces alcohol, dealcoholization techniques reduce its content while preserving wine’s sensory and chemical integrity. Various methods, such as membrane processes, reverse osmosis, spinning cone column technology, and thermal distillation [4], offer different advantages and challenges, particularly regarding wine volume loss, aroma retention, and overall quality. Among these, vacuum distillation (VD) is promising for partial or complete dealcoholization by operating at lower pressures and temperatures.

This study investigates VD for partial dealcoholization (~2°). First, in a model wine, we analyze the impact of VD parameters—including number of columns, column packing type, and pressure—on aroma variation. Second, we evaluate VD’s effect on the chemical composition and sensory profile of white, rosé, and red wines using a selected VD setup.

The analysis of VD in model wine shows that higher alcohols are partially lost in the distillate (59–78% v/v ethanol), with 35% reduction for 2-methylpropanol and 3-methylbutanol, while methanol loss remains minimal (~2%). Aldehydes exhibit higher loss rates, with 60% loss for ethanal and 80% for ethyl acetate. Esters show 74–99% loss, depending on type. Results indicate that pressure significantly impacts aroma retention: lowering the pressure from 150 mbar to 50 mbar enhances ester retention, while 150 mbar increases higher alcohol and aldehyde removal.

In wines, partial dealcoholization (~2°) extracts mostly ethyl acetate (~90%), small amounts of methanol (1–10%), and 20–40% of higher alcohols. Larger esters (C8+ and cyclic esters) are less affected by VD, suggesting their lower volatility helps retain them in the wine, preserving some aromatic complexity. However, 80–100% of short-chain (C2–C4) and medium-chain (up to C6) esters are lost in the distillate, significantly altering the wine’s aroma. These esters exhibit high Henry’s law constants, explaining their volatility and major impact on wine aroma.

To conclude, even at the early stages of dealcoholization (~2° reduction), most wine aromas are lost in the first distillate fraction, highlighting the challenge of preserving fruity notes while separating them from ethanol.

References

[1] Ohana-Levi, N.; Netzer, Y. Long-Term Trends of Global Wine Market. Agriculture, 2023, 13 (1), 224. https://doi.org/10.3390/agriculture13010224.

[2] Anderson, B. O.; Berdzuli, N.; Ilbawi, A.; Kestel, D.; Kluge, H. P.; Krech, R.; Mikkelsen, B.; Neufeld, M.; Poznyak, V.; Rekve, D.; et al. Health and Cancer Risks Associated with Low Levels of Alcohol Consumption. Lancet Public Heal., 2023, 8 (1), e6–e7. https://doi.org/10.1016/s2468-2667(22)00317-6.

[3] Tempere, S.; Pérès, S.; Espinoza, A. F.; Darriet, P.; Giraud-Héraud, E.; Pons, A. Consumer Preferences for Different Red Wine Styles and Repeated Exposure Effects. Food Qual. Preference, 2019, 73, 110–116. https://doi.org/10.1016/j.foodqual.2018.12.009.

[4] Sam, F. E.; Ma, T.-Z.; Salifu, R.; Wang, J.; Jiang, Y.-M.; Zhang, B.; Han, S.-Y. Techniques for Dealcoholization of Wines: Their Impact on Wine Phenolic Composition, Volatile Composition, and Sensory Characteristics. Foods, 2021, 10 (10), 2498. https://doi.org/10.3390/foods10102498.

Publication date: June 5, 2025

Type: Oral communication

Authors

Marion Breniaux1,*, Rémy Ghidossi1

1 Univ. Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave-d’Ornon, France.

Contact the author*

Keywords

partial dealcoholization, vacuum distillation, aromas, esters, higher alcohols

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring the use of high-power ultrasound in white and rosé winemaking

Since the approval in 2019 of the use of high-power ultrasound (US) in winemaking to support extractive processes from grape to must, the study of this technology in red winemaking has increased significantly, with laboratory and semi-industrial scale studies.

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Impact of GoLo technology on the aroma profile of red and white wines after total and partial dealcoholisation

Wine dealcoholisation has been practised since the early 1900s and has gained importance due to climate change
and shifting consumer preferences for lower-alcohol beverages. Rising temperatures are accelerating grape
ripening, increasing sugar content and, consequently, raising the alcohol strength of wines.