terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

Abstract

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1]. For non-volatile composition, initial grape or yeast related compounds (i.e polyphenols, peptides) decrease during aging as they undergo oxidative and non-oxidative reactions with other wine components to form new compounds [2]. The oxygen transfer through the cork stopper is an important factor that may influence the chemical formation and, thus the evolution of red wines.

The aim of this study was to investigate the change in untargeted non-volatile compounds during the aging of experimental Syrah red wines. These wines were bottled with 4 micro-agglomerated cork stoppers with increasing oxygen transfer rates (OTR) and were stored for a period of 24 months at 17°C in a cellar. Subsequently, an untargeted metabolomic analysis based on high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) was carried out on the non-aged wines and after the 24 months of ageing [3]. Mass spectral data processing and multivariate statistical methods (PCA, volcano plot) were conducted for classification of samples and identification of discriminant features between young and aged wines.

Unsupervised PCA et discriminant analysis by volcano plot distinguished molecular ions across wine types and ageing times, highlighting CHO and CHON compounds in non-aged wines and increased CHO, CHONS, and CHOS compounds with ageing, especially sulfonated molecules. Polyphenols derivate like pyranoanthocyanins (CHO), emerged as key markers of wine evolution. Our metabolomics analysis highlighted the potential role of specific chemical markers in the impact of cork oxygen transfer rate (OTR) on wine ageing

This research provides us with new insight into the complex chemical changes in the non-volatile fraction (polyphenols, peptides) that occur during the ageing of red wine and highlights the potential impact of cork OTR on wine composition.

References

[1] Tao, Y., García, J.F., Sun, D.-W. (2014) Crit. Rev. Food Sci. Nut. 54, 817–835

[2] Echave, J., Barral, M., Fraga-Corral, M., Prieto, M.A., Simal-Gandara, J. (2021) Molecules 26, 713

[3] Garcia, L., Meudec, E., Sommerer, N., Garcia, F., Saucier, C. (2025) Food Chemistry, 464, 141517

Publication date: June 5, 2025

Type: Oral communication

Authors

Luca Garcia1,*, Emmanuelle Meudec1,2, Nicolas Sommerer1,2, François Garcia1 and Cédric Saucier1

1 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 INRAE, PROBE Research Infrastructure, PFP Polyphenols Analytical Facility, Montpellier, France

Contact the author*

Keywords

polyphenols, ageing, metabolomics analysis cork OTR

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.