Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing
Abstract
During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1]. For non-volatile composition, initial grape or yeast related compounds (i.e polyphenols, peptides) decrease during aging as they undergo oxidative and non-oxidative reactions with other wine components to form new compounds [2]. The oxygen transfer through the cork stopper is an important factor that may influence the chemical formation and, thus the evolution of red wines.
The aim of this study was to investigate the change in untargeted non-volatile compounds during the aging of experimental Syrah red wines. These wines were bottled with 4 micro-agglomerated cork stoppers with increasing oxygen transfer rates (OTR) and were stored for a period of 24 months at 17°C in a cellar. Subsequently, an untargeted metabolomic analysis based on high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) was carried out on the non-aged wines and after the 24 months of ageing [3]. Mass spectral data processing and multivariate statistical methods (PCA, volcano plot) were conducted for classification of samples and identification of discriminant features between young and aged wines.
Unsupervised PCA et discriminant analysis by volcano plot distinguished molecular ions across wine types and ageing times, highlighting CHO and CHON compounds in non-aged wines and increased CHO, CHONS, and CHOS compounds with ageing, especially sulfonated molecules. Polyphenols derivate like pyranoanthocyanins (CHO), emerged as key markers of wine evolution. Our metabolomics analysis highlighted the potential role of specific chemical markers in the impact of cork oxygen transfer rate (OTR) on wine ageing
This research provides us with new insight into the complex chemical changes in the non-volatile fraction (polyphenols, peptides) that occur during the ageing of red wine and highlights the potential impact of cork OTR on wine composition.
References
[1] Tao, Y., García, J.F., Sun, D.-W. (2014) Crit. Rev. Food Sci. Nut. 54, 817–835
[2] Echave, J., Barral, M., Fraga-Corral, M., Prieto, M.A., Simal-Gandara, J. (2021) Molecules 26, 713
[3] Garcia, L., Meudec, E., Sommerer, N., Garcia, F., Saucier, C. (2025) Food Chemistry, 464, 141517
Issue: Macrowine 2025
Type: Oral communication
Authors
1 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 INRAE, PROBE Research Infrastructure, PFP Polyphenols Analytical Facility, Montpellier, France
Contact the author*
Keywords
polyphenols, ageing, metabolomics analysis cork OTR