terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

Abstract

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts [1]. Among grape pomace we can found grape seeds, which have showed promising results in reducing wine turbidity, since they have proteins [2] which interact with turbidity-forming compounds as such polysaccharides [3], polyphenols [4] and other proteins [5] through primarily hydrophobic interactions [6] accelerating their precipitation. However, these seed extracts do not achieve the clarification effect obtained with other commercial clarifying agents frequently used in winery. For that, in this study, white grape seed extracts were enzymatically, physically and chemically modified and applied on a red wine after malolactic fermentation with the objective of verifying if their effectiveness in the clarification process and in the maintenance of wine quality was improved. The determination of turbidity, chromatic parameters and phenolic content, carried out in wines after a period of contact with different clarifiers, showed that extracts treated with cellulase, ultrasounds and HCl improved its performance in comparison with grape seed extract without treatment, the results being very similar to that obtained with commercial clarifying agents commonly used in wineries. It is clear that some of the treatments carried out on grape seed extracts produced important changes at structural and composition level, making them more reactive and improving their clarifying capacity without affecting red wine quality. Their implementation as new clarifying agents in wine industry would promote the circular economy in the oenological sector.

References

[1] Bordiga, M., Travaglia, F., Locatelli, M., Arlorio, M., Coïsson, J. D. (2015). Int. J. Food Sci. Technol., 50(9), 2022–2031.

[2] Gazzola, D., Vincenzi, S., Marangon, M., Pasini, G., Curioni, A. (2017). Aust. J. Grape Wine Res., 23, 215–226.

[3] Osete-Alcaraz, A., Bautista-Ortín, A. B., Ortega-Regules, A., Gómez-Plaza, E (2019). Am. J. Enol. Vitic., 70 (2), 201‒204.

[4] Jones-Moore, H. R., Jelley, R. E., Marangon, M., Fedrizzi, B. (2022). Food Hydrocolloids, 123, 107150.

[5] Watrelot, A. A., Schulz, D. L., Kennedy, J. A. (2017). Food Hydrocolloids, 63, 571‒579.

[6] Marangon, M., Marassi, V., Roda, B., Zattoni, A., Reschiglian, P., Mattivi, F., Moio, L., Ricci, A., Piombino, P., Río Segade, S., Giacosa, S., Slaghenaufi, D., Versari, A., Vrhovsek, U., Ugliano, M., De Iseppi, A., Marangon, C., Curioni, A. (2024). Food Res. Int., 187, 114414.

Publication date: June 5, 2025

Type: Poster

Authors

María José Carrasco Palazón1*, Encarna Gómez Plaza1, Enrique Pérez Navarro2, Ricardo Jurado Fuentes3, Ana Belén Bautista Ortín1

1 Department of Food Technology, Nutrition and Bromatology, Faculty of Veterinary Science. University of Murcia, 30100, Murcia, Spain
2 Statistical and Bioinformatics Support Unit of the Biosanitary Research Service (SIB), Scientific and Technical Research Area (ACTI). University of Murcia, 30100, Murcia, Spain
3 Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, Spain

Contact the author*

Keywords

turbidity, grape seed extracts, physico-chemical modification, phenolic compounds

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

Two dimensions, one mission: unlocking grape composition by GC × GC

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity.

Study of the volatile aroma profile of five Italian grape varieties submitted to controlled postharvest withering

Wines made with grapes submitted to postharvest dehydration are often referred to as “passito” or “straw wines.” This distinct style of winemaking consists of a process of water loss that allows the berries to undergo a mild water stress and senescence process [1].