terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Abstract

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2]. Starmerella bacillaris, a non-Saccharomyces yeast, remains relatively understudied, yet recent discoveries have highlighted distinct metabolic traits among wine yeasts [3] and the promising role of its polysaccharides in winemaking [4]. This study investigated different S. bacillaris strains alongside Saccharomyces cerevisiae as potential sources of functional yeast derivatives for protein stabilization in white wine.

Yeast biomass was cultivated through aerobic fed-batch propagation and mechanically processed to obtain yeast cell walls. To generate distinct polysaccharidic derivatives, yeast cell walls were subjected to various extraction processes. The physicochemical properties of the obtained macromolecular derivatives were characterized using near-infrared (NIR) spectroscopy, HPLC, SDS-PAGE, and high-resolution size-exclusion chromatography (HRSEC). The stabilization efficacy of the obtained derivatives was assessed in white wine through turbidity analysis, identifying a promising product from S. bacillaris. Ultrafiltration was then employed to isolate the active polysaccharide fraction, which underwent further characterization through linkage analysis and nuclear magnetic resonance (NMR) spectroscopy. The fraction was identified as a linear mannan, distinguishing it from the typically branched mannoproteins found in S. cerevisiae-derived cell wall extracts [5].

These findings reveal the unique structural features of S. bacillaris cell walls and their technological potential for alternative protein stabilization strategies in winemaking.

References

[1] M. Ángeles Pozo-Bayón, I. Andújar-Ortiz, and M. V. Moreno-Arribas, “Scientific evidences beyond the application of inactive dry yeast preparations in winemaking,” Aug. 2009. doi: 10.1016/j.foodres.2009.03.004.

[2] Y. Liu et al., “Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review,” Mar. 15, 2021, Elsevier B.V. doi: 10.1016/j.ijbiomac.2021.01.125.

[3] V. Tyibilika, M. E. Setati, A. Bloem, B. Divol, and C. Camarasa, “Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production,” Int J Food Microbiol, vol. 411, Feb. 2024, doi: 10.1016/j.ijfoodmicro.2023.110537.

[4] L. de P. D. Moreira et al., “Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines,” Fermentation, vol. 8, no. 6, p. 252, Jun. 2022, doi: 10.3390/FERMENTATION8060252/S1.

[5] R. Bastos, P. G. Oliveira, V. M. Gaspar, J. F. Mano, M. A. Coimbra, and E. Coelho, “Brewer’s yeast polysaccharides — A review of their exquisite structural features and biomedical applications,” Carbohydr Polym, vol. 277, Feb. 2022, doi: 10.1016/j.carbpol.2021.118826.

Publication date: June 4, 2025

Type: Flash talk

Authors

Zeno Molinelli1,*, Chiara Nadai1, Simone Vincenzi1, Alessio Giacomini1, Paolo Antoniali2, Daniele Pizzinato3, Celine Sparrow3, Cristina De Castro4, Antonio Molinaro4 and Viviana Corich1

1 Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
2 Italiana Biotecnologie S.r.l., Via Vigazzolo, 112, 36054 Montebello Vicentino, Italy
3 Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thevenet, 51530, Magenta, France
4 Department of Agricultural Sciences, University of Napoli Federico II, Reggia di Portici – Piazza Carlo di Borbone, 1, 80055, Portici

Contact the author*

Keywords

yeast polysaccharides, Starmerella bacillaris, protein stability, cell wall

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Experiments with the use of stems in Pinot noir winemaking

Vinification trials were carried out between 2018 and 2021 in the experimental winery at Laimburg Research Centre, Alto Adige, to test the effect of grape stem inclusion during fermentation of Pinot Noir.

Bioanalytical workflow for exploring the chemical diversity and antioxidant capacity of grape juice peptides

The oxidative stability of white wines is related to a flow of chemical reactions involving a number of native wine containing compounds composing their antioxidant metabolome.

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].

Evaluation of consumer behaviour, acceptance and willingness to return of faulty wines

The analysis of consumer attitudes towards wine, especially towards wines perceived as faulty, is an aspect that requires more research than has been carried out so far [1]. This study aims to analyse consumer behaviour in situations involving the consumption of faulty wines and to assess the level of acceptance of such wines.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.