terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Colloidal color stabilization in wine: A comparative study of Saccharomyces and non-Saccharomyces mannoproteins

Colloidal color stabilization in wine: A comparative study of Saccharomyces and non-Saccharomyces mannoproteins

Abstract

Structure-function relationships between the polysaccharide part of S. cerevisiae Mannoprotein Pools (MPs) and their potential to interact with anthocyanins and Protein-Tannins aggregates was previously assessed [1,2]. Herein, MPs from nine yeast strains including Saccharomyces and non-Saccharomyces species were evaluated by their potential to stabilize Colloidal Coloring Matter (CCM) of red wines. β-glucanases extraction procedure preserved mannoproteins native structure to their uttermost extent. The strains comprised a wild-type (MP-WT) S. cerevisiae strain and its mutants ΔMnn2 (MP-Mnn2) and ΔMnn4 (MP-Mnn4) – linear N-glycosylated backbone and absence of mannosyl-phosphate groups, respectively; non-Saccharomyces strains of 3 different species: Hanseniaspora vineae (MP-Hv), Torulaspora delbrueckii (MP-Td), and Schizosaccharomyces japonicus (MP-Sj) all grown in anaerobiosis; and three enological Saccharomyces cerevisiae strains grown in different metabolic conditions: MP-C1 (anaerobiosis), and MP-IC1 and MP-IC2 (aerobiosis). MPs colloidal stabilization properties were evaluated at first by their capacity to stabilize K4[Fe(CN)6] (Prussian Blue) in presence of CaCl2 [3], then by their capacity to inhibit turbidity increases (ΔNTU) of young Merlot and oxidized Marselan wines stored for 2 days at 4 °C. Wine samples after cold test were centrifuged and the color parameters of the supernatant were assessed.

Prussian blue control samples lost complete absorbance at 750 nm 24 hours after CaCl2 addition at 0.8 g.L-1. MP-Sj and MP-IC2 accelerated blue color loss. Other MPs had a stabilization effect whose efficiency depended on the MP. MP-Mnn2/MP-Mnn4 stabilized 90-100% of color followed by MP-Hv/MP-WT (~80%), and MP-C1/MP-IC1 (~60%). Increases in MP concentration did not systematically led to an increase in stability, which indicates that several physico-chemical interactions were taking place simultaneously.

Concerning the stability tests in real wine conditions, MP-Sj and MP-IC2 had the same effect as in model conditions (Prussian blue) while, the positive impact on colloidal stability was dependent on the wine matrix and MP concentration. In Marselan wines, MPs had a mild impact on ΔNTU at concentration of 1 g.L-1 whereas in Merlot wines, at the same concentration, MP-Hv, MP-Td, and MP-IC1 reduced ΔNTU of 2 to 3-fold in comparison with control samples.

Associated with the characteristics of each MP polysaccharide moiety, our findings help discover the interaction mechanisms involved in CCM and how MPs can improve its stability. The net negative charge of mannoproteins seems to have a negative impact on color stability. Other molecular characteristics counter-balance this instability effect such as compactness and the protein mass percentage.

References

[1] Assunção Bicca, S., Poncet-Legrand, C., Williams, P., Mekoue, J., Doco, T., Vernhet, A. (2022). Carbohydrate polymers, 277. https://doi.org/10.1016/j.carbpol.2021.118758

[2] Assunção Bicca, S., Poncet-Legrand, C., Roi, S., Mekoue, J., Doco, T., Vernhet, A. (2023). Food Chemistry, 422. https://doi.org/10.1016/j.foodchem.2023.136160

[3] Michaël, N., Apolinar-Valiente, R., Iturmendic, N., Williams, P., Doco, T., Moine, V., Massot, A., Jaouen, I., Sanchez, C. (2019). Food Hydrocolloids, 97. https://doi.org/10.1016/j.foodhyd.2019.105176

Publication date: June 4, 2025

Type: Poster

Authors

Saul Assunção Bicca1,*, Oceane Quideau1, Nathalie Sieczkowski2, Rémi Schneider3, Julie Mekoue2, Céline Poncet-Legrand1 and Thierry Doco1

1 Unité Mixte de Recherche Sciences Pour l’Œnologie, Institut Agro, INRAE, Université de Montpellier, Montpellier, France.
2 Lallemand, SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac, France.
3 Oenobrands, Parc Scientifique Agropolis 2196 boulevard de la Lironde, 34980 Montferrier-sur-Lez, France.

Contact the author*

Keywords

mannoproteins, polysaccharide characterization, non-Saccharomyces strains, colloidal stability

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.

First disclosure of eugenol precursors in Vitis genus: analytical development and quantification

The main aim of this work was to develop an analytical method to disclosure the
molecular form of eugenol precursor. Indeed eugenol is an important contributor to
Armagnac spirits typicity made with Baco blanc.

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.