terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

Abstract

The wine sector is one of the most significant industries worldwide, with Spain being a leading country in wine production and export. A key factor in wine quality is its aroma, which is directly influenced by the volatile compounds present in the grape, with terpenes being among the most significant contributors. These compounds are responsible for the floral and fruity aromas characteristic of wine (1). Analytical methods for grape and wine analysis, particularly for volatile metabolites, often involve costly instrumentation and labor-intensive extraction procedures. In contrast, vibrational spectroscopy techniques, such as ultraviolet-visible (UV-Vis), and near-infrared (NIR) spectroscopy, have gained recognition as valuable analytical tool due to their simplicity, speed, and non-destructive nature. Currently, there is a notable scarcity of studies presenting accurate predictive models for terpene compounds in grape must (2). The objective of this work is to ascertain the viability of applying a wide range spectrum spectroscopy (UV-Vis-NIR) to develop precise models capable of predicting the terpene composition of the grape must. Our investigation specifically targets on the determination of glycosylated terpenes, including Z-8-hydroxylinalool, cis-furan linalool oxide, cis-pyran linalool oxide, geraniol (trans), HO-trienol (3,7-dimethyl-1,5,7-octatrien-3-ol), linalool, trans-furan linalool oxide, trans-pyran linalool oxide, and α-terpineol. Partial Least Squares Regression (PLSR) was employed to construct models. The results showed satisfactory predictive models for linalool (r2 = 0.8; RMSE = 0.89), geraniol (r2 = 0.8; RMSE = 8.63), and α-terpineol (r2 = 0.84; RMSE = 2.56). The remaining predictive models developed showed acceptable coefficients of determination. UV region was identified as the most relevant region for the construction of the PLS-R models. These findings highlight the potential of this innovative technique to revolutionize the wine industry by enabling faster and cost-effective analysis of volatile compounds in must, thereby optimizing the winemaking process and improving product traceability.

References

[1] Vilanova, M., García, M., & González, M. (2012). GC-MS analysis of volatile compounds in grapes. Journal of Food Science, 77(3), C215–C220

[2] Boido, E., Fariña, L., Carrau, F., Dellacassa, E., & Cozzolino, D. (2013). Characterization of Glycosylated Aroma Compounds in Tannat Grapes and Feasibility of the Near Infrared Spectroscopy Application for Their Prediction. Food Analytical Methods, 6(1), 100-111

Publication date: June 4, 2025

Type: Poster

Authors

Marta Pinillos-Robres M.1, José Ignacio Manzano1, Mar Vilanova1,*

1 Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño (España)

Contact the author*

Keywords

NIR, spectroscopy, wine, must, PLS-R, volatile compounds

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Closure permeability: a key parameter for modulating the aroma of monovarietal white wines during bottle ageing

Bottle aging is crucial for wine quality, influencing its chemical and sensory properties [1]. Ideally, a phase of qualitative ageing enhances sensory attributes before a decline in quality occurs. Understanding the impact of oenological variables on these phases is a key challenge in modern winemaking.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.

Lactic acid bacteria: A possible aid to the remediation of smoke taint?

With climate change, the occurrence of wildfires has increased in several viticultural regions of the world. Subsequently, smoke taint has become a major issue, threatening the sustainability of the wine industry.

Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

The foundation of wine production lies in the use of high-quality grapes. To produce wines that meet the highest standards, a fast and reliable analytical assessment of grape quality is essential. Many wineries currently employ Fourier-Transform Middle-Infrared Spectroscopy (FTIR) for this purpose.