terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Impact of GoLo technology on the aroma profile of red and white wines after total and partial dealcoholisation

Impact of GoLo technology on the aroma profile of red and white wines after total and partial dealcoholisation

Abstract

Wine dealcoholisation has been practised since the early 1900s and has gained importance due to climate change and shifting consumer preferences for lower-alcohol beverages. Rising temperatures are accelerating grape ripening, increasing sugar content and, consequently, raising the alcohol strength of wines. In addition, health concerns related to alcohol consumption have also contributed to the growing demand for dealcoholised wines [1].

Dealcoholisation techniques can be applied at different stages of winemaking. Post-fermentation techniques physically remove alcohol and include membrane-based methods such as nanofiltration, reverse osmosis, and osmotic distillation, as well as non-filtration techniques such as vacuum distillation, spinning cone columns, and multi-stage membrane systems [2]. GoLo, a low-temperature vacuum distillation technology, operates similarly to the spinning cone column but integrates multiple separation steps into a continuous system. It efficiently removes nearly 100% of the volatile aroma compounds—allowing their reintegration—and reduces the alcohol strength to as low as 0.05% (v/v) [3].

This study investigates the effects of total and partial dealcoholisation using GoLo technology on the aromatic composition of both red and white wines. The wines underwent two levels of dealcoholisation: partial dealcoholisation, reducing the alcohol strength to approximately 7.5% v/v, and total dealcoholisation, lowering the alcohol strength to 0.5% v/v. The volatile compound profile of both treated and untreated wines was analysed using gas chromatography-mass spectrometry (GC-MS) combined with multiple headspace solid-phase microextraction (MHS-SPME) [4]. The analysis focused on key aroma compounds, including esters, alcohols, and acids, which play a crucial role in the wine’s aromatic profile.

The results showed that GoLo technology was effective in reducing alcohol strength; however, total dealcoholisation led to a significant loss of aroma compounds. Partial dealcoholisation consistently preserved more of the original aromatic complexity in both wines.

This study emphasises the impact of ethanol removal on wine aroma and underscores the benefits of partial dealcoholisation in preserving sensory characteristics.

References

[1] Brányik, T., Silva, D. P., Baszczyňski, M., Lehnert, R., e Silva, J. B. A. (2012). J. Food Eng., 108(4), 493-506.

[2] Mangindaan, D., Khoiruddin, K., Wenten, I.G. (218). Trends Food Sci. Technol., 71, 36–45.

[3] Pienaar, S.W. (2016) U.S. Patent US20150132459A1.

[4] Milheiro, J., Filipe-Ribeiro, L., Cosme, F., Nunes, F. M. (2023). Food Chem., 421, 136154.

Publication date: June 4, 2025

Type: Poster

Authors

Juliana Milheiro1, Luís Moreira1, Sandrine S. Ferreira1, Fernanda Cosme1 and Fernando M. Nunes1,*

1 Food and Wine Chemistry Lab, Chemistry Research Centre – Vila Real, University of Trás-os-Montes and Alto Douro, Portugal.

Contact the author*

Keywords

dealcoholisation, GoLo technology, aroma profile, wine

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

Sensory and consumer perceptions, and consumption barriers of low and no-alcohol wines in Trentino/Alto Adige

The growing demand for non-alcoholic beverages, driven by health-conscious consumers and shifting social norms, has positioned dealcoholized wines as a promising alternative in the global beverage industry (Akhtar et al., 2025, in press; Kakroo, 2024).

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].