terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Impact of GoLo technology on the aroma profile of red and white wines after total and partial dealcoholisation

Impact of GoLo technology on the aroma profile of red and white wines after total and partial dealcoholisation

Abstract

Wine dealcoholisation has been practised since the early 1900s and has gained importance due to climate change and shifting consumer preferences for lower-alcohol beverages. Rising temperatures are accelerating grape ripening, increasing sugar content and, consequently, raising the alcohol strength of wines. In addition, health concerns related to alcohol consumption have also contributed to the growing demand for dealcoholised wines [1].

Dealcoholisation techniques can be applied at different stages of winemaking. Post-fermentation techniques physically remove alcohol and include membrane-based methods such as nanofiltration, reverse osmosis, and osmotic distillation, as well as non-filtration techniques such as vacuum distillation, spinning cone columns, and multi-stage membrane systems [2]. GoLo, a low-temperature vacuum distillation technology, operates similarly to the spinning cone column but integrates multiple separation steps into a continuous system. It efficiently removes nearly 100% of the volatile aroma compounds—allowing their reintegration—and reduces the alcohol strength to as low as 0.05% (v/v) [3].

This study investigates the effects of total and partial dealcoholisation using GoLo technology on the aromatic composition of both red and white wines. The wines underwent two levels of dealcoholisation: partial dealcoholisation, reducing the alcohol strength to approximately 7.5% v/v, and total dealcoholisation, lowering the alcohol strength to 0.5% v/v. The volatile compound profile of both treated and untreated wines was analysed using gas chromatography-mass spectrometry (GC-MS) combined with multiple headspace solid-phase microextraction (MHS-SPME) [4]. The analysis focused on key aroma compounds, including esters, alcohols, and acids, which play a crucial role in the wine’s aromatic profile.

The results showed that GoLo technology was effective in reducing alcohol strength; however, total dealcoholisation led to a significant loss of aroma compounds. Partial dealcoholisation consistently preserved more of the original aromatic complexity in both wines.

This study emphasises the impact of ethanol removal on wine aroma and underscores the benefits of partial dealcoholisation in preserving sensory characteristics.

References

[1] Brányik, T., Silva, D. P., Baszczyňski, M., Lehnert, R., e Silva, J. B. A. (2012). J. Food Eng., 108(4), 493-506.

[2] Mangindaan, D., Khoiruddin, K., Wenten, I.G. (218). Trends Food Sci. Technol., 71, 36–45.

[3] Pienaar, S.W. (2016) U.S. Patent US20150132459A1.

[4] Milheiro, J., Filipe-Ribeiro, L., Cosme, F., Nunes, F. M. (2023). Food Chem., 421, 136154.

Publication date: June 4, 2025

Type: Poster

Authors

Juliana Milheiro1, Luís Moreira1, Sandrine S. Ferreira1, Fernanda Cosme1 and Fernando M. Nunes1,*

1 Food and Wine Chemistry Lab, Chemistry Research Centre – Vila Real, University of Trás-os-Montes and Alto Douro, Portugal.

Contact the author*

Keywords

dealcoholisation, GoLo technology, aroma profile, wine

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).

Cross analytical and sensory differentiation of monovarietal white wines from four autochthonous grape varieties: focus on macromolecules

White wines contain macromolecules such as proteins, phenolic compounds and polysaccharides. On a sensory
level, these compounds contribute to the ‘mouthfeel’ that differentiates the white wines worldwide [1].

An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

Wine minerals, including calcium, derive mainly from grape berry extraction, but they could also arise from winemaking additives, processing aids, and other sources.

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.