terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Abstract

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1]. Although, commercially available Saccharomyces cerevisiae strains could be inoculated and accomplish a well-controlled must fermentation, the growing recognition of the role of non-Saccharomyces yeasts, increases the interest in using diverse species in mixed inoculated fermentations, where yeast interactions are crucial [2]. The aim of this study was to investigate the microbial interactions between indigenous and commercial S. cerevisiae strains and two commercial and one indigenous non-Saccharomyces species used as fermentation starters under laboratory conditions. The microbial combinations were assessed for their fermentation kinetics and population dynamics. Subsequently, fermentations were conducted using three monovarietal grape musts from Greek varieties, monitoring CO2 emissions and microbial population dynamics throughout the process [3]. The resulting wines were analyzed for their oenological properties and evaluated through sensory descriptive analysis [4]. Overall, all fermentation were completed successfully. More specifically, sequential inoculation with the first commercial non-Saccharomyces exhibited a significantly lower fermentation rate (~0.4 g/L/h) and rapid population reduction within 24 hours, while the other two strains enhanced fermentation rates and persisted until the completion of the process. Notably, sequential inoculation with the indigenous non-Saccharomyces strain resulted in the predominance of this species (~8.5 log CFU/mL), followed by S. cerevisiae population (~8 log CFU/mL). The second commercial non-Saccharomyces strain exhibited neutral interactions with S. cerevisiae, making it the most promising for further study. Moreover, wines fermented with the latter non-Saccharomyces strain maintained neutral interactions with S. cerevisiae strains and showed no significant differences in oenological properties, including total acidity, volatile acidity, ethanol yield and pH values, compared to those fermented with S. cerevisiae monocultures. Sensory analysis revealed that the inoculation strategy influenced the aromatic profile, with co-inoculated fermentations enhancing floral attributes.

Aknowledgements

The research project entitled «reLees» is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number:15100).

References

[1] Barata, A., Malfeito-Ferreira, M., and Loureiro, V. (2012). International Journal of Food Microbiology 153(3):243–59.

[2] Bordet, F., Joran, A., Klein, G., Roullier-Gall, C., Alexandre, H. (2020). Microorganisms 8(4):1–33.

[3] Renault, P., Coulon, j., de Revel, G., Barbe, J.C., and Bely, M. (2015). International Journal of Food Microbiology, 207:40–48.

[4] Tzamourani, A., Evangelou, A., Ntourtoglou, G., Lytra, G., Paraskevopoulos, I. and Dimopoulou, M. (2024). Applied Sciences, 14(4):1522.

Publication date: June 4, 2025

Type: Poster

Authors

Aikaterini Tzamourani1,*, Angeliki Kasioura1, Artemis Tsioka1, George Ntourtoglou1, Danai Gkizi1, Alexandra Evangelou1, Panagiotis Arapitsas1, Maria Dimopoulou1

1 Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Ag. Spyridonos St., 12243 Egaleo, Greece

Contact the author*

Keywords

yeast interactions, non-Saccharomyces, Saccharomyces cerevisiae, Greek wines

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.