terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Abstract

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1]. Although, commercially available Saccharomyces cerevisiae strains could be inoculated and accomplish a well-controlled must fermentation, the growing recognition of the role of non-Saccharomyces yeasts, increases the interest in using diverse species in mixed inoculated fermentations, where yeast interactions are crucial [2]. The aim of this study was to investigate the microbial interactions between indigenous and commercial S. cerevisiae strains and two commercial and one indigenous non-Saccharomyces species used as fermentation starters under laboratory conditions. The microbial combinations were assessed for their fermentation kinetics and population dynamics. Subsequently, fermentations were conducted using three monovarietal grape musts from Greek varieties, monitoring CO2 emissions and microbial population dynamics throughout the process [3]. The resulting wines were analyzed for their oenological properties and evaluated through sensory descriptive analysis [4]. Overall, all fermentation were completed successfully. More specifically, sequential inoculation with the first commercial non-Saccharomyces exhibited a significantly lower fermentation rate (~0.4 g/L/h) and rapid population reduction within 24 hours, while the other two strains enhanced fermentation rates and persisted until the completion of the process. Notably, sequential inoculation with the indigenous non-Saccharomyces strain resulted in the predominance of this species (~8.5 log CFU/mL), followed by S. cerevisiae population (~8 log CFU/mL). The second commercial non-Saccharomyces strain exhibited neutral interactions with S. cerevisiae, making it the most promising for further study. Moreover, wines fermented with the latter non-Saccharomyces strain maintained neutral interactions with S. cerevisiae strains and showed no significant differences in oenological properties, including total acidity, volatile acidity, ethanol yield and pH values, compared to those fermented with S. cerevisiae monocultures. Sensory analysis revealed that the inoculation strategy influenced the aromatic profile, with co-inoculated fermentations enhancing floral attributes.

Aknowledgements

The research project entitled «reLees» is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number:15100).

References

[1] Barata, A., Malfeito-Ferreira, M., and Loureiro, V. (2012). International Journal of Food Microbiology 153(3):243–59.

[2] Bordet, F., Joran, A., Klein, G., Roullier-Gall, C., Alexandre, H. (2020). Microorganisms 8(4):1–33.

[3] Renault, P., Coulon, j., de Revel, G., Barbe, J.C., and Bely, M. (2015). International Journal of Food Microbiology, 207:40–48.

[4] Tzamourani, A., Evangelou, A., Ntourtoglou, G., Lytra, G., Paraskevopoulos, I. and Dimopoulou, M. (2024). Applied Sciences, 14(4):1522.

Publication date: June 4, 2025

Type: Poster

Authors

Aikaterini Tzamourani1,*, Angeliki Kasioura1, Artemis Tsioka1, George Ntourtoglou1, Danai Gkizi1, Alexandra Evangelou1, Panagiotis Arapitsas1, Maria Dimopoulou1

1 Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Ag. Spyridonos St., 12243 Egaleo, Greece

Contact the author*

Keywords

yeast interactions, non-Saccharomyces, Saccharomyces cerevisiae, Greek wines

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Evaluation of shelf life of white wines in aluminium bottle: a modelling approach

Aluminum is a particularly interesting material for packaging because it is environmentally sustainable, lighter than standard glass bottles, and protective against light radiation [1].

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.