Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

Abstract

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’. The particularity of this terroir is directly related to the chaotic morphology of the hillslopes formed by one of the largest landslides ever to occur in the Alps. In November 1248, the collapse of the Mont Granier cliff, which lost nearly 900 m in height, caused the displacement of more than 500 million m3 of mud and rocks extending downslope over about 30 km2. This landslide entirely ‘reset’ the soils of the original hillslopes, but also generated chaotic morphologies (locally called ‘mollards’), over which vine stocks have been planted.
Even if vine-growing was attested before 1248, the terroir of the ‘Vins des Abymes’ is specific to the soils affected by the landslide which therefore only existed after 1248.

These hillslopes remained abandoned until the early fourteenth century, and were then gradually occupied by agricultural activities and by vine-growing. The study of the construction of this terroir is made possible by the first modern cadastral survey, ‘La mappe sarde’, an exceptional document drawn up in the then Kingdom of Savoy, in 1713. It shows the extension of the vineyards in the early eighteenth century and confirms that territorial organization is linked to wine-growing practices. It also highlights the presence of many temporary shelters scattered throughout the vineyard, called ‘sartos’ and shows that the geometry of the plots and the road network are adapted to the rugged slopes. The history of the construction of this landscape gives a strong identity to this terroir, from both geological and human perspectives.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Fanny BIASINI (1), Christophe PETIT (1), Amélie QUIQUEREZ (2), Ghislain GARLATTI

(1) UMR 7041 ArScAn, University of Paris 1 Pantheon-Sorbonne, France
(2) UMR CNRS 5594 ARTeHIS, University of Burgundy, France

Contact the author

Keywords

collapse, local wine, vineyard development, vineyard historical construction

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality.

Evolution of the metabolic profile of grapes in a context of climate change

In the current context of global climate change, anticipating the evolution of the oenological potential of emblematic grape varieties of regions such as Burgundy and Champagne is a guarantee of the sustainability of a sector which has considerable economic weight. however, if various models of climate change cast doubt on the sustainability of these grape varieties in these regions, appellation decrees, as well as consumer expectations, do not allow or consider the use of alternative grape varieties. In addition, control/compensation methods such as irrigation are also not permitted.

The role of œnology in the enhancement of terroir expression

The reality of terroir is reflected by the typicality that it confers on the wine. The relationship between the origin of wine and its quality did already exist before the appearance of œnological science. Producers and merchants have always tried to improve wine quality in order to satisfy their clients.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Market analysis of Chilean Pinot noir, Carménère, and Cabernet-Sauvignon wines: A comparative study of chemical parameters across low, medium, and high price segments

Wine quality is a complex concept determined by multiple factors, including vineyard management, winemaking operations, and the sensory perception of key attributes.