Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

Abstract

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’. The particularity of this terroir is directly related to the chaotic morphology of the hillslopes formed by one of the largest landslides ever to occur in the Alps. In November 1248, the collapse of the Mont Granier cliff, which lost nearly 900 m in height, caused the displacement of more than 500 million m3 of mud and rocks extending downslope over about 30 km2. This landslide entirely ‘reset’ the soils of the original hillslopes, but also generated chaotic morphologies (locally called ‘mollards’), over which vine stocks have been planted.
Even if vine-growing was attested before 1248, the terroir of the ‘Vins des Abymes’ is specific to the soils affected by the landslide which therefore only existed after 1248.

These hillslopes remained abandoned until the early fourteenth century, and were then gradually occupied by agricultural activities and by vine-growing. The study of the construction of this terroir is made possible by the first modern cadastral survey, ‘La mappe sarde’, an exceptional document drawn up in the then Kingdom of Savoy, in 1713. It shows the extension of the vineyards in the early eighteenth century and confirms that territorial organization is linked to wine-growing practices. It also highlights the presence of many temporary shelters scattered throughout the vineyard, called ‘sartos’ and shows that the geometry of the plots and the road network are adapted to the rugged slopes. The history of the construction of this landscape gives a strong identity to this terroir, from both geological and human perspectives.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Fanny BIASINI (1), Christophe PETIT (1), Amélie QUIQUEREZ (2), Ghislain GARLATTI

(1) UMR 7041 ArScAn, University of Paris 1 Pantheon-Sorbonne, France
(2) UMR CNRS 5594 ARTeHIS, University of Burgundy, France

Contact the author

Keywords

collapse, local wine, vineyard development, vineyard historical construction

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Genome editing applications on grapevine cv. Aglianico for the knockout of susceptibility genes related to fungal diseases

Context and purpose of the study. Italy hosts diverse grapevine varieties crucial for viticultural biodiversity. Preserving this biodiversity is essential for maintaining a diversified genetic pool and addressing future challenges such as climate change and emerging plant diseases.

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).