Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Spatial Analysis of Climate in Winegrape Growing Regions in Portugal

Spatial Analysis of Climate in Winegrape Growing Regions in Portugal

Abstract

Spatial climate data at a 1 km resolution has allowed for a comprehensive mapping and assessment of viticulture DOs regions in Portugal. Overall the 50 regions and sub-regions in Portugal range from just over 1200 GDD in the Vinho Verde to just over 2300 GDD in Alentejo with 34% of the wine producing areas falling in a Region II, 28% a Region III and 30% a Region IV on the Winkler classification system. On the Huglin Index the sub-regions range from just over 1600 to nearly 2700, representing HI climate types from Very Cool to Very Warm. For the GST index the sub-regions have a range from 15.7ºC to 20.7ºC, representing Cool, Intermediate and Hot climate maturity suitability on the GST. However, the results show that the spatial variability of climate within the regions, can be significant, with some regions representing as many as five climate classes suitable for viticulture. The results show how important it is to develop within region assessments of climate suitability for viticulture. Finally the diversity of climate types suitable for viticulture found in the Portuguese Wine Regions shows the broad range of wine styles that can be produced in the country.

DOI:

Publication date: August 27, 2020

Issue: Terroir 2012

Type: Article

Authors

Gregory V. JONES (1), Fernando ALVES (2)

(1) Department of Environmental Studies, Southern Oregon University, 1250 Siskiyou Boulevard, Ashland, Oregon 97520, USA
(2) ADVID, Associação para o Desenvolvimento da Viticultura Duriense, Qta. St. Maria, APT 137, 5050-106 Godim, Portugal

Contact the author

Keywords

viticulture, wine, climate, Portugal

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

Insulative effects of vine shelters may impact growth potential and cold hardiness of young vines

Context and purpose of the study. The seasons immediately following planting are key growth stages where young vines are particularly susceptible to various forms of damage.

Diurnal cycles of grapevine leaf water potential under field conditions

Les cycles journaliers du potentiel hydrique foliaire (Ψl) ont été établis toutes les heures, pour différents stades phénologiques, sur deux localités et en fonction de différentes mesures de la température de l’air et du déficit en pression de vapeur (VPD). De faibles valeurs pour ces 2 paramètres ont été enregistrées tout au long de la saison à

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

Toasted Vine-Shoots As An Alternative Enological Tool. Impact On The Sensory Profile Of Tempranillo Wines

The use of toasted vine-shoots as an alternative enological tool to make differentiated wines has generated interest among researchers and wineries. However, the evolution of these wines in bottle and the effect on the sensory profile has not been studied so far.