Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Observation and modeling of climate at fine scales in wine-producing areas

Observation and modeling of climate at fine scales in wine-producing areas

Abstract

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions, global atmospheric models are not adapted to local scales and impacts at fine scales are still approximate. Although real progress in downscaling, using meso-scale atmospheric models taking surface characteristics into account, was realized over the past years, no operative model is in use yet to simulate climate at local scales (hundreds of meters). The TERVICLIM and TERACLIM programs aim at observing climate at local scales in different wine producing regions worldwide; simulating both climate and climate change in order to produce a fine scale assessment of the climate change impacts, thereafter simulating scenario of adaptation for viticulture, providing guidance to decision-makers in the viticultural sector.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Hervé QUÉNOL

Laboratoire LETG-Rennes-COSTEL, UMR6554 du CNRS, Université Haute Bretagne, place du recteur Henri le Moal 35043 Rennes Cedex.

Contact the author

Keywords

Climate change, small scales, spatial variability, terroir

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).