Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Observation and modeling of climate at fine scales in wine-producing areas

Observation and modeling of climate at fine scales in wine-producing areas

Abstract

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions, global atmospheric models are not adapted to local scales and impacts at fine scales are still approximate. Although real progress in downscaling, using meso-scale atmospheric models taking surface characteristics into account, was realized over the past years, no operative model is in use yet to simulate climate at local scales (hundreds of meters). The TERVICLIM and TERACLIM programs aim at observing climate at local scales in different wine producing regions worldwide; simulating both climate and climate change in order to produce a fine scale assessment of the climate change impacts, thereafter simulating scenario of adaptation for viticulture, providing guidance to decision-makers in the viticultural sector.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Hervé QUÉNOL

Laboratoire LETG-Rennes-COSTEL, UMR6554 du CNRS, Université Haute Bretagne, place du recteur Henri le Moal 35043 Rennes Cedex.

Contact the author

Keywords

Climate change, small scales, spatial variability, terroir

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

The importance of rural extension and advisory services to achieve a sustainable viticulture in a climate change scenario

A healthy and dynamic agricultural sector is an important foundation of rural development, generating strong bonds to other economic sectors.

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

Study of intramolecular distribution of hydrogen isotopes in ethanol depending on deuterium content of water and the origin of carbohydrates

The paper presents the results of consistently developing studies carried out in 2022-2024 on the distribution of deuterium 2H(D) in intracellular water of grapes and wine products, taking into account the influence of natural, climatic and technogenic factors using high-resolution quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR.

Analysis of mousy off-flavour wines

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.