Grapegrowing soils

Abstract

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant (1). Topography has been considered a determinant of the quality of wine from the Roman Empire; however, the classical treatises on viticulture pay little attention to soils and do not analyze the importance of adequate soil management. Grapevines have a remarkable adaptability to the soil type and may live and thrive in very different soil types. However, the soil type is a determinant of the quantity and quality of grapes produced. It is possible to asset that varieties do not belong to any place; the climate, soil, and the work of man are the real factors of quality (2). The basic aspect of the expression of terroir is the interrelationship between soil, climate and variety when those are optimized. Because of this interrelationship is impossible to define the “ideal” soil for a vineyard, since optimal results may be reached in different climate-soil-vineyard management combinations. This article summarizes the role of soils in viticulture.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Vicente SOTÉS

Universidad Politécnica de Madrid-ETSI Agrónomos. Ciudad Universitaria s/n, 28040 Madrid (Spain)

Contact the author

Keywords

Pedology, geology, geomorphology, physico-chemical characteristics, water content, microbial diversity.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

Health benefits of winemaking by-products: in vitro study of the phenolic profile and potential healthy properties

The wine sector plays a significant role in the international agri-food industry, with the winemaking process leading to the generation of considerable amounts of by-products. Among these by-products, grape pomace, is one of the most abundant resources, mainly finding application in the production of distillates, fertilizers, and animal feed.