Grapegrowing soils

Abstract

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant (1). Topography has been considered a determinant of the quality of wine from the Roman Empire; however, the classical treatises on viticulture pay little attention to soils and do not analyze the importance of adequate soil management. Grapevines have a remarkable adaptability to the soil type and may live and thrive in very different soil types. However, the soil type is a determinant of the quantity and quality of grapes produced. It is possible to asset that varieties do not belong to any place; the climate, soil, and the work of man are the real factors of quality (2). The basic aspect of the expression of terroir is the interrelationship between soil, climate and variety when those are optimized. Because of this interrelationship is impossible to define the “ideal” soil for a vineyard, since optimal results may be reached in different climate-soil-vineyard management combinations. This article summarizes the role of soils in viticulture.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Vicente SOTÉS

Universidad Politécnica de Madrid-ETSI Agrónomos. Ciudad Universitaria s/n, 28040 Madrid (Spain)

Contact the author

Keywords

Pedology, geology, geomorphology, physico-chemical characteristics, water content, microbial diversity.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

A two years trial was carried out in Chianti (Central Italy) to assess at the detailed scale the viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions, by means of the ΔC13 measured in the must sugars

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].