Grapegrowing soils

Abstract

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant (1). Topography has been considered a determinant of the quality of wine from the Roman Empire; however, the classical treatises on viticulture pay little attention to soils and do not analyze the importance of adequate soil management. Grapevines have a remarkable adaptability to the soil type and may live and thrive in very different soil types. However, the soil type is a determinant of the quantity and quality of grapes produced. It is possible to asset that varieties do not belong to any place; the climate, soil, and the work of man are the real factors of quality (2). The basic aspect of the expression of terroir is the interrelationship between soil, climate and variety when those are optimized. Because of this interrelationship is impossible to define the “ideal” soil for a vineyard, since optimal results may be reached in different climate-soil-vineyard management combinations. This article summarizes the role of soils in viticulture.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Vicente SOTÉS

Universidad Politécnica de Madrid-ETSI Agrónomos. Ciudad Universitaria s/n, 28040 Madrid (Spain)

Contact the author

Keywords

Pedology, geology, geomorphology, physico-chemical characteristics, water content, microbial diversity.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

The relationship of wine store customers with the areas of production, considering provenance and tourism

This work aims at identifying the most appropriate marketing strategies to inform consumers of the global market about the added value of the wines of Friuli Venezia Giulia.

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century.

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.