Grapegrowing soils

Abstract

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant (1). Topography has been considered a determinant of the quality of wine from the Roman Empire; however, the classical treatises on viticulture pay little attention to soils and do not analyze the importance of adequate soil management. Grapevines have a remarkable adaptability to the soil type and may live and thrive in very different soil types. However, the soil type is a determinant of the quantity and quality of grapes produced. It is possible to asset that varieties do not belong to any place; the climate, soil, and the work of man are the real factors of quality (2). The basic aspect of the expression of terroir is the interrelationship between soil, climate and variety when those are optimized. Because of this interrelationship is impossible to define the “ideal” soil for a vineyard, since optimal results may be reached in different climate-soil-vineyard management combinations. This article summarizes the role of soils in viticulture.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Vicente SOTÉS

Universidad Politécnica de Madrid-ETSI Agrónomos. Ciudad Universitaria s/n, 28040 Madrid (Spain)

Contact the author

Keywords

Pedology, geology, geomorphology, physico-chemical characteristics, water content, microbial diversity.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Investigation on Valbelluna area and its oenological potentiality: case study on Prosecco DOC

Valbelluna valley is an area located in the northeastern Italy. It is extended from the East-West between Feltre and Belluno, along the Piave waterway and enclosed between Cansiglio valley on the South and the Dolomites in the North. Here, the villages of Limana and Trichiana are present, which are considered for decades potentially interesting areas to aim a niche production with own particular properties.The position of this area, its sun exposition, its soil composition and the microclimate, are ideal factors to obtain vines and consequently wines with unique features especially regarding the diversity and complexity aroma.

New genomic techniques for sustainable management of water stress and pathogen control

Context and purpose of the study. Climate changes pose the need to develop new grapevine varieties and rootstocks that are more tolerant to stress and diseases.

Heat-stress responses regulated via a MYB24-MYC2 complex

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).

The smoking gun of climate change in wines

In this audio recording of the IVES science meeting 2022, Antonio Graca (Sogrape, Portugal) speaks about smoke taint and climate change. This presentation is based on an original article accessible for free on IVES Technical Reviews.