Grapegrowing soils

Abstract

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant (1). Topography has been considered a determinant of the quality of wine from the Roman Empire; however, the classical treatises on viticulture pay little attention to soils and do not analyze the importance of adequate soil management. Grapevines have a remarkable adaptability to the soil type and may live and thrive in very different soil types. However, the soil type is a determinant of the quantity and quality of grapes produced. It is possible to asset that varieties do not belong to any place; the climate, soil, and the work of man are the real factors of quality (2). The basic aspect of the expression of terroir is the interrelationship between soil, climate and variety when those are optimized. Because of this interrelationship is impossible to define the “ideal” soil for a vineyard, since optimal results may be reached in different climate-soil-vineyard management combinations. This article summarizes the role of soils in viticulture.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Vicente SOTÉS

Universidad Politécnica de Madrid-ETSI Agrónomos. Ciudad Universitaria s/n, 28040 Madrid (Spain)

Contact the author

Keywords

Pedology, geology, geomorphology, physico-chemical characteristics, water content, microbial diversity.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Actual challenges and the need to produce alternative products from red grapes rich in phenols and antioxidants

The global consumption of wine has undergone significant changes after several years of covid-19, which was the beginning of a global crisis of the current century. This pushed some people to start looking for comfort and security as they felt that the world around them was losing these benefits. In most cases, this has led to them to idea of rethinking their lives in an attempt to live better or continuing to stay true to their habits and lifestyles despite the pressure of changes. Alcohol in any form is a part of these reactions, leading to increased consumption in the early stages of a crisis, particularly in relation to anxiety.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Influence of harvest time and withering length combination on reinforced Nebbiolo wines: phenolic composition, colour traits, and sensory profile

Sforzato di Valtellina DOCG is a reinforced dry red wine produced in the mountain area of Valtellina alpine valley (North Italy), using ‘Nebbiolo’ grapes that undergo a withering process. This process impacts on the grape composition due to a sugar concentration and changes in secondary metabolism influencing volatile organic compounds (VOCs) and polyphenols.

Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

In the Champagne vineyards, spring frosts are the cause of significant variations in the volume of the harvest which are very penalizing for the trade. This variability is reflected both in time (years without frost alternating with years with severe frosts) and in space. Certain sectors of the vineyard are in fact statistically more susceptible to frost than others, but each year no municipality can consider itself immune to this climatic accident. The objective of the study is precisely to analyze the spatial distribution of frost and to determine its main mechanisms, linked to the topography of the hillsides, their orientation but also to regional meteorological variables.

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,