Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Abstract

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest in some cultivars that are widely spread out. Meanwhile, clonal selection has contributed to the development of these grape varieties driving towards a massive loss of genetic resources by the use of ± 400 clones only. Thus, since the middle 90’s, many local repositories have been established by the IFV and French selection partners.
These repositories are established in complementarity with INRA Domaine de Vassal for the maintenance of Vitis vinifera (and other species of Vitis) and the IFV for selected clones. Today, the total of local repositories has reached 151 holding 113 registered varieties and over than 15 000 clones. Passport data of this material is recorded in a national online data-base.
Some clonal research programs have been achieved using material held in repositories. For example, it is the case with Syrah for new material resistant to Syrah decline, Cabernet franc and Tannat for new clones with lower fertility, etc….

This presentation will also give a large overview on the French policy of conservation (history, recent developments, and tools for the management), the organization of the different levels of repositories, and some data including endangered and neglected cultivars that require short term actions to be engaged. Today, there are still 77 varieties without any repository. Some were widely used in the middle of the XXth century but have drastically decreased. Indeed, time has come now to engage a large inventory of old vineyards. Since the last decade, about 50 000 ha of old vineyards have been definitively discarded. That means that opportunities to find diversity are being reduced year after year.
Due to this coordination and partnership, some programs have recently been started : Jurançon noir, Muscat d’Alexandrie, Sacy, etc…
But it seems clear that means are required to prospect additional ressources, plant and manage repositories. Unfortunately, the wine industry does not necessarily consider these programs as a priority even if, in the long term perspective, there are good reasons to have everyone concerned and involved: climate changes, global competition, standardization, etc….

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Olivier YOBRÉGAT (1), Christophe SÉRÉNO (2), Laurent AUDEGUIN (2), Thierry LACOMBE (3), Bertrand CHATELET (4), Jean-Michel BOURSIQUOT (5)

(1) IFV, V’Innopôle Sud-Ouest, BP 22, 81310 Lisle sur Tarn, France
(2) Géno-Vigne®, Domaine de l’Espiguette, 30240 Le Grau du Roi, France
(3) Géno-Vigne®, INRA, UMR AGAP, Equipe DAVEM, 2 place Viala, 34060 Montpellier, France
(4) SICAREX Beaujolais, 210 Boulevard Vermorel, 69400 Villefranche sur Saône, France
(5) Géno-Vigne®, IFV, Montpellier SupAgro, 2 place Viala, 34060 Montpellier, France

Contact the author

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized.

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.