Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Abstract

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest in some cultivars that are widely spread out. Meanwhile, clonal selection has contributed to the development of these grape varieties driving towards a massive loss of genetic resources by the use of ± 400 clones only. Thus, since the middle 90’s, many local repositories have been established by the IFV and French selection partners.
These repositories are established in complementarity with INRA Domaine de Vassal for the maintenance of Vitis vinifera (and other species of Vitis) and the IFV for selected clones. Today, the total of local repositories has reached 151 holding 113 registered varieties and over than 15 000 clones. Passport data of this material is recorded in a national online data-base.
Some clonal research programs have been achieved using material held in repositories. For example, it is the case with Syrah for new material resistant to Syrah decline, Cabernet franc and Tannat for new clones with lower fertility, etc….

This presentation will also give a large overview on the French policy of conservation (history, recent developments, and tools for the management), the organization of the different levels of repositories, and some data including endangered and neglected cultivars that require short term actions to be engaged. Today, there are still 77 varieties without any repository. Some were widely used in the middle of the XXth century but have drastically decreased. Indeed, time has come now to engage a large inventory of old vineyards. Since the last decade, about 50 000 ha of old vineyards have been definitively discarded. That means that opportunities to find diversity are being reduced year after year.
Due to this coordination and partnership, some programs have recently been started : Jurançon noir, Muscat d’Alexandrie, Sacy, etc…
But it seems clear that means are required to prospect additional ressources, plant and manage repositories. Unfortunately, the wine industry does not necessarily consider these programs as a priority even if, in the long term perspective, there are good reasons to have everyone concerned and involved: climate changes, global competition, standardization, etc….

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Olivier YOBRÉGAT (1), Christophe SÉRÉNO (2), Laurent AUDEGUIN (2), Thierry LACOMBE (3), Bertrand CHATELET (4), Jean-Michel BOURSIQUOT (5)

(1) IFV, V’Innopôle Sud-Ouest, BP 22, 81310 Lisle sur Tarn, France
(2) Géno-Vigne®, Domaine de l’Espiguette, 30240 Le Grau du Roi, France
(3) Géno-Vigne®, INRA, UMR AGAP, Equipe DAVEM, 2 place Viala, 34060 Montpellier, France
(4) SICAREX Beaujolais, 210 Boulevard Vermorel, 69400 Villefranche sur Saône, France
(5) Géno-Vigne®, IFV, Montpellier SupAgro, 2 place Viala, 34060 Montpellier, France

Contact the author

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.