Arsenic in soil, leaves, grapes and wines

Abstract

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries (cv. Chardonnay) and white wines was studied, considering vineyards near to an old mining area (naturally rich in As), in comparison with others from uncontaminated areas in Trentino (Italy).
All analyses were performed using an inductively coupled plasma mass-spectrometer.
In soil, the acqua regia extracted As ranged from 3.7 to 283 mg/kg, whereas bioavailable As varied from 18 to 639 mg/kg. As in washed and acid mineralised leaves and berries was between 16.3-579 mg/kg dw and between <0.1-36.8 mg/kg dw, respectively. As content in wines was always <1.4 mg/L. Pearson’s test showed significant and positive correlations between the As concentrations in soils, leaves and berries. The samples collected near the mining area showed significantly higher As concentrations.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Tomás ROMÁN VILLEGAS, Daniela BERTOLDI, Roberto LARCHER, Alessandro SANTATO, Maurizio BOTTURA, Giorgio NICOLINI

FEM-IASMA Fondazione Edmund Mach – Istituto Agrario di San Michele all’Adige, via E. Mach, 1, 38010 San Michele all’Adige, Italy

Contact the author

Keywords

arsenic, plant uptake, soil, wine, human health risk

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Screening of phenolic compounds and antioxidant potential of grapes, wine and grape by-products

Polyphenols, bioactive secondary metabolites abundantly found in various grapevine components such as stalks, skins, and seeds, have attracted considerable attention in recent decades due to their potential health benefits. These compounds, including flavan-3-ols, flavanols, flavones, and stilbenes, are known for their antioxidant and anti-inflammatory properties.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

How sensory quality of wines can be accessed as a trait in MAS grape vine breeding

In the context of the global crises of global warming, biodiversity and pollution, current agricultural practices need to be reconsidered.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.