Arsenic in soil, leaves, grapes and wines

Abstract

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries (cv. Chardonnay) and white wines was studied, considering vineyards near to an old mining area (naturally rich in As), in comparison with others from uncontaminated areas in Trentino (Italy).
All analyses were performed using an inductively coupled plasma mass-spectrometer.
In soil, the acqua regia extracted As ranged from 3.7 to 283 mg/kg, whereas bioavailable As varied from 18 to 639 mg/kg. As in washed and acid mineralised leaves and berries was between 16.3-579 mg/kg dw and between <0.1-36.8 mg/kg dw, respectively. As content in wines was always <1.4 mg/L. Pearson’s test showed significant and positive correlations between the As concentrations in soils, leaves and berries. The samples collected near the mining area showed significantly higher As concentrations.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Tomás ROMÁN VILLEGAS, Daniela BERTOLDI, Roberto LARCHER, Alessandro SANTATO, Maurizio BOTTURA, Giorgio NICOLINI

FEM-IASMA Fondazione Edmund Mach – Istituto Agrario di San Michele all’Adige, via E. Mach, 1, 38010 San Michele all’Adige, Italy

Contact the author

Keywords

arsenic, plant uptake, soil, wine, human health risk

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Cis-acting regulatory elements are DNA sequences that can be bound by transcription factors to regulate the expression of genes in a condition-dependent and tissue-specific way. It is nowadays possible to search for DNA motives and sequences that a given transcription factor is binding or at least can, but it is still hard to have a glance at all the transcription factors that are contemporaneously located at the same locus. Inspired by an existing technique that uses the CRISPR-Cas system in mammal cells, we are trying to develop a protocol to study such regulation in Vitis vinifera. Using the highly sequence-specific binding capacity of a catalytically inactive Cas9 protein (dCas9), our idea is to set up a system to target a desired sequence and precipitate all the crosslinked proteins and distantly interacting chromatin at this locus and analyze them.