Terroir 2012 banner
IVES 9 IVES Conference Series 9 Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Abstract

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape. The aim of this study is to compare biodiversity of different habitats and landscape configurations in order to target strategic conservation actions and their locations in viticulture landscapes to improve biodiversity. The arthropods taxon has been used to evaluate biodiversity dynamics because of its high diversity and supposed ability to rapidly react to landscape dynamics. Arthropods are identified through the RBA method (Rapid Biodiversity Assessment). Arthropod diversity is evaluated in five different habitats and measured by species richness and Shannon index. Within four different radii (50, 100, 150 and 200 meters) around each arthropod sampling site, landscape composition (relative percentage of each land cover type), structure (variability and heterogeneity indexes) and diversity (Shannon index applied to landscape) were analyzed through a Geographic Information System of land cover based on aerial photographs.

The results show significant differences in arthropod diversity among habitats. Cultivated habitats show lower values of diversity than semi natural ones. The landscape approach highlighted negative correlations between arthropod richness and proportion of fruit orchards at all radii. At the smallest scale (50m radius) a positive correlation is found between arthropod diversity and interstitial spaces (plot edges, headlands, roadsides…). Hence, semi natural habitats and non cultivated areas appear to play a major role in the preservation of arthropod diversity in agricultural landscapes. According to these results, landscape and biodiversity actions will be performed at the “Appellation” scale focusing on improving the ecologic connectivity between semi natural habitats supporting biodiversity.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin PORTE (1), Joël ROCHARD (1), Josépha GUENSER (2), Maarten VAN HELDEN (3)

(1) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France
(2) ADERA-Vitinnov, ISVV 210, chemin de Leysotte, CS 50008, 33882 Villenave d’Ornon, France
(3) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, 1 cours Général De Gaulle, 33170 Gradignan, France

Contact the author

Keywords

Biodiversity, landscape, vineyard, RBA method, arthropods

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Color stabilization properties of oenological tannins

The use of oenological tannins is authorized for many years by the OIV and advised for color stabilization. For this reason, winemakers look for a better understanding of tannins/anthocyanins interactions to produce deeply colored wines with great color stability during aging.

Étude de l’adaptation des cépages Muscat à petits grains et Muscat d’Alexandrie dans l’A.O.C. Muscat de Rivesaltes

L’A.O.C. Muscat de Rivesaltes prévoit l’utilisation de 2 cépages Muscats : le Muscat à petits grains (M.P.G) et le Muscat d’Alexandrie (M.A).

Italy sweet revolution: how club grapes are transforming the table grape market

Italy is the leader table grape producer country in Europe and the eighth worldwide (OIV, 2021). The italian production area is sized at approximately 47,248 hectares with a production of 9.66 million quintals of grapes. Apulia and sicily are the main producing italian regions which collectively account for over the 90% of the italian production area (istat, 2022).

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.

Active thermography to determine grape bud mortality: system design and feasibility

Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.