Terroir 2012 banner
IVES 9 IVES Conference Series 9 Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Abstract

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape. The aim of this study is to compare biodiversity of different habitats and landscape configurations in order to target strategic conservation actions and their locations in viticulture landscapes to improve biodiversity. The arthropods taxon has been used to evaluate biodiversity dynamics because of its high diversity and supposed ability to rapidly react to landscape dynamics. Arthropods are identified through the RBA method (Rapid Biodiversity Assessment). Arthropod diversity is evaluated in five different habitats and measured by species richness and Shannon index. Within four different radii (50, 100, 150 and 200 meters) around each arthropod sampling site, landscape composition (relative percentage of each land cover type), structure (variability and heterogeneity indexes) and diversity (Shannon index applied to landscape) were analyzed through a Geographic Information System of land cover based on aerial photographs.

The results show significant differences in arthropod diversity among habitats. Cultivated habitats show lower values of diversity than semi natural ones. The landscape approach highlighted negative correlations between arthropod richness and proportion of fruit orchards at all radii. At the smallest scale (50m radius) a positive correlation is found between arthropod diversity and interstitial spaces (plot edges, headlands, roadsides…). Hence, semi natural habitats and non cultivated areas appear to play a major role in the preservation of arthropod diversity in agricultural landscapes. According to these results, landscape and biodiversity actions will be performed at the “Appellation” scale focusing on improving the ecologic connectivity between semi natural habitats supporting biodiversity.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin PORTE (1), Joël ROCHARD (1), Josépha GUENSER (2), Maarten VAN HELDEN (3)

(1) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France
(2) ADERA-Vitinnov, ISVV 210, chemin de Leysotte, CS 50008, 33882 Villenave d’Ornon, France
(3) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, 1 cours Général De Gaulle, 33170 Gradignan, France

Contact the author

Keywords

Biodiversity, landscape, vineyard, RBA method, arthropods

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Glutathione (L-g-glutamyl-L-cysteinyl-glycine) is a tripeptide which contains three constitutive amino acids: glutamate, cysteine and glycine. It is present in plants and foods, and fruits like grapes.

Influence of ‘pinotage’ defoliation on fruit and wine quality

Among the different management techniques in Viticulture, which have
been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of
the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts.

Aroma compounds and physical-chemical characterization of grapes and wines from Mount Etna “relic-jewels” vine genotypes

In the last few decades, minor vine genotypes traditionally cultivated on the Mount Etna slopes, have attracted the interest of both researchers and vine growers, as they offer an interesting oenological profile.

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.