Terroir 2012 banner
IVES 9 IVES Conference Series 9 Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Abstract

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape. The aim of this study is to compare biodiversity of different habitats and landscape configurations in order to target strategic conservation actions and their locations in viticulture landscapes to improve biodiversity. The arthropods taxon has been used to evaluate biodiversity dynamics because of its high diversity and supposed ability to rapidly react to landscape dynamics. Arthropods are identified through the RBA method (Rapid Biodiversity Assessment). Arthropod diversity is evaluated in five different habitats and measured by species richness and Shannon index. Within four different radii (50, 100, 150 and 200 meters) around each arthropod sampling site, landscape composition (relative percentage of each land cover type), structure (variability and heterogeneity indexes) and diversity (Shannon index applied to landscape) were analyzed through a Geographic Information System of land cover based on aerial photographs.

The results show significant differences in arthropod diversity among habitats. Cultivated habitats show lower values of diversity than semi natural ones. The landscape approach highlighted negative correlations between arthropod richness and proportion of fruit orchards at all radii. At the smallest scale (50m radius) a positive correlation is found between arthropod diversity and interstitial spaces (plot edges, headlands, roadsides…). Hence, semi natural habitats and non cultivated areas appear to play a major role in the preservation of arthropod diversity in agricultural landscapes. According to these results, landscape and biodiversity actions will be performed at the “Appellation” scale focusing on improving the ecologic connectivity between semi natural habitats supporting biodiversity.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin PORTE (1), Joël ROCHARD (1), Josépha GUENSER (2), Maarten VAN HELDEN (3)

(1) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France
(2) ADERA-Vitinnov, ISVV 210, chemin de Leysotte, CS 50008, 33882 Villenave d’Ornon, France
(3) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, 1 cours Général De Gaulle, 33170 Gradignan, France

Contact the author

Keywords

Biodiversity, landscape, vineyard, RBA method, arthropods

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Non-alcoholic wines: evaluation of chemical profile and biological properties

The market of non-alcoholic wine has notably increased in recent years, driven by growing health awareness and regulatory trends aimed at reducing alcohol consumption.

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction