Terroir 2012 banner
IVES 9 IVES Conference Series 9 Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Abstract

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys (position and number of soil sampling) to obtain a very precise final soil map. Since 2007, Tutiac Winegrowers (Vignerons de Tutiac, Bordeaux) have decided to map all their vineyards (over 4000 hectares) with this technology. Maps are used by the Winery to provide advices more suited to the terroir: grass cover, fertilization, replanting (grape variety/rootstock), grape selection and to define the potentiality of each plot regarding market expectations. However, because of logistic reasons, the Tutiac Winery is not able to use the very high-resolution of the maps for within-field valorization (selective harvest). But, intra-block information of resistivity maps, crossed with complementary measures, can be used in a different way, in particular to cut down use of phytosanitary treatment. This paper presents the GIPI project which plans to vary the rate of crop inputs inside the field. Agronomic (input data, abacus) and technological aspects (software, direct injection sprayer) will be described through an example of a vineyard (25 hectares) where many measurements (resistivity, pedology, NDVI…) have been carried out.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Xavier CASSASSOLLES (1), Jérôme OSSAR (2), Julien-Mathieu MARCISET (2), Michel DABAS (1)

(1) GEOCARTA, 5 rue de la Banque 75002 Paris – France
(2) VIGNERONS DE TUTIAC – La Cafourche 33860 Marcillac – France

Contact the author

Keywords

soil electrical resistivity, terroir, vigour, precision viticulture, direct injection, crop inputs

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Developing effective physiological strategies to rejuvenate virus-infected vineyards by lowering the virus load in infected grapevines

Context and purpose of the study. The wine industries face significant challenges from two highly detrimental viruses: leafroll and red blotch.

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.

CIEDE2000 colour difference value as a parameter for tracing the ageing process on wood aged spirits

It is quite common nowadays to carry out analyses which allow to control the ageing of spirits that are aged in wood casks. Many control parameters have been previously studied, such as the concentration of different phenolic compounds or the Total Polyphenol Index, in order to better understand the ageing process of wood aged spirits. On the other hand, it is frequent to analyse as a physical parameter the colour of those spirit samples, by stating them as an array of three coordinates from various colour spaces as CIE L*a*b* or CIE L*C*H*.

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.