Terroir 2012 banner
IVES 9 IVES Conference Series 9 Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Abstract

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys (position and number of soil sampling) to obtain a very precise final soil map. Since 2007, Tutiac Winegrowers (Vignerons de Tutiac, Bordeaux) have decided to map all their vineyards (over 4000 hectares) with this technology. Maps are used by the Winery to provide advices more suited to the terroir: grass cover, fertilization, replanting (grape variety/rootstock), grape selection and to define the potentiality of each plot regarding market expectations. However, because of logistic reasons, the Tutiac Winery is not able to use the very high-resolution of the maps for within-field valorization (selective harvest). But, intra-block information of resistivity maps, crossed with complementary measures, can be used in a different way, in particular to cut down use of phytosanitary treatment. This paper presents the GIPI project which plans to vary the rate of crop inputs inside the field. Agronomic (input data, abacus) and technological aspects (software, direct injection sprayer) will be described through an example of a vineyard (25 hectares) where many measurements (resistivity, pedology, NDVI…) have been carried out.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Xavier CASSASSOLLES (1), Jérôme OSSAR (2), Julien-Mathieu MARCISET (2), Michel DABAS (1)

(1) GEOCARTA, 5 rue de la Banque 75002 Paris – France
(2) VIGNERONS DE TUTIAC – La Cafourche 33860 Marcillac – France

Contact the author

Keywords

soil electrical resistivity, terroir, vigour, precision viticulture, direct injection, crop inputs

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory