Terroir 2012 banner
IVES 9 IVES Conference Series 9 Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Abstract

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys (position and number of soil sampling) to obtain a very precise final soil map. Since 2007, Tutiac Winegrowers (Vignerons de Tutiac, Bordeaux) have decided to map all their vineyards (over 4000 hectares) with this technology. Maps are used by the Winery to provide advices more suited to the terroir: grass cover, fertilization, replanting (grape variety/rootstock), grape selection and to define the potentiality of each plot regarding market expectations. However, because of logistic reasons, the Tutiac Winery is not able to use the very high-resolution of the maps for within-field valorization (selective harvest). But, intra-block information of resistivity maps, crossed with complementary measures, can be used in a different way, in particular to cut down use of phytosanitary treatment. This paper presents the GIPI project which plans to vary the rate of crop inputs inside the field. Agronomic (input data, abacus) and technological aspects (software, direct injection sprayer) will be described through an example of a vineyard (25 hectares) where many measurements (resistivity, pedology, NDVI…) have been carried out.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Xavier CASSASSOLLES (1), Jérôme OSSAR (2), Julien-Mathieu MARCISET (2), Michel DABAS (1)

(1) GEOCARTA, 5 rue de la Banque 75002 Paris – France
(2) VIGNERONS DE TUTIAC – La Cafourche 33860 Marcillac – France

Contact the author

Keywords

soil electrical resistivity, terroir, vigour, precision viticulture, direct injection, crop inputs

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

Mechanistic insights into the bioavailability of oleocanthal and oleacein from olive oil in presence of wine active peptides and amino acids

Oleocanthal (OC) and oleacein (OL) are highly bioactive secoiridoids found in olive oil at elevated concentrations, especially when it is produced from unripe olives (Olea europaea L.). Both compounds have been correlated with strong activities against serious diseases through recent clinical trials. The most important clinical trials have been performed in patients against chronic lymphocytic

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

Bioprotection and oenological tannins association to protect Rosé wine color

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

Do natural wines differ from conventionally-produced wines?

In recent years, consumer awareness for consuming healthy and environmental sustainability products has considerably increased [1]. In an ever-changing and highly competitive environment such as the wine sector, production of wines without sulfites, or biodynamic, organic or vegan wines, has experienced an important increase to meet the new needs of consumers [2,3]. Beyond these categories of regulated products, a new concept has emerged: natural wines (NW), for which there is not an established definition or legal regulation. Rather, producers have a personal idea of naturalness under the premise of applying minimal intervention from grape to wine production [4]. In this context, it is hypothesized that self-defined natural wines are different from conventional wines (CW) in their sensory and chemical profile. The predicament of natural wine is based on anecdotic declarations and assumes that minimal intervention guarantees the production of wines with organoleptic properties able to express the “terroir” and thus promote wine diversity, plurality and sensory typicity against the risk of standardization of CW.