Terroir 2012 banner
IVES 9 IVES Conference Series 9 Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Abstract

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys (position and number of soil sampling) to obtain a very precise final soil map. Since 2007, Tutiac Winegrowers (Vignerons de Tutiac, Bordeaux) have decided to map all their vineyards (over 4000 hectares) with this technology. Maps are used by the Winery to provide advices more suited to the terroir: grass cover, fertilization, replanting (grape variety/rootstock), grape selection and to define the potentiality of each plot regarding market expectations. However, because of logistic reasons, the Tutiac Winery is not able to use the very high-resolution of the maps for within-field valorization (selective harvest). But, intra-block information of resistivity maps, crossed with complementary measures, can be used in a different way, in particular to cut down use of phytosanitary treatment. This paper presents the GIPI project which plans to vary the rate of crop inputs inside the field. Agronomic (input data, abacus) and technological aspects (software, direct injection sprayer) will be described through an example of a vineyard (25 hectares) where many measurements (resistivity, pedology, NDVI…) have been carried out.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Xavier CASSASSOLLES (1), Jérôme OSSAR (2), Julien-Mathieu MARCISET (2), Michel DABAS (1)

(1) GEOCARTA, 5 rue de la Banque 75002 Paris – France
(2) VIGNERONS DE TUTIAC – La Cafourche 33860 Marcillac – France

Contact the author

Keywords

soil electrical resistivity, terroir, vigour, precision viticulture, direct injection, crop inputs

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Red wines from southwest France, Lebanon and South Korea: study of phenolic composition and antioxidant and biological activities according to grape varieties and winemaking processes

The phenolic compounds present in the wine are responsible for reducing the risk of developing chronic diseases (cardiovascular, cancer, diabetes, Alzheimer …) because of their antioxidant activities and the presence of nutraceutical molecules with targeted biological activities. Polyphenols not only contribute to the “French paradox” but also contribute to give the wine its color, structure, aroma and allow a long-term preservation.

Une procédure de mise à jour des zones AOC

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today.

Adaptive winemaking technologies using PIWI varieties in the wine industry of Ukraine

In recent years, the impact of climate change has been pushing agriculture toward the implementation of innovative production methods aimed at countering the negative consequences of climate change.

Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Stilbenes, a kind of non-flavonoid phenolic compounds, have been reported to be responsible for various beneficial effects. Their biological properties include antibacterial and antifungal effects, as well as cardioprotective, neuroprotective and anticancer actions (Guerrero et al. 2009).Several strategies can be used to increase stilbene content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).