Terroir 1996 banner
IVES 9 IVES Conference Series 9 The developement of vineyard zonation and demarcation in South Africa

The developement of vineyard zonation and demarcation in South Africa


[English version below]

L’histoire de viticulture de l’Afrique du Sud embrasse 340 ans, et a commencé, à la province du Cap, où les colonisateurs hollandais ont planté les premières vignes. L’arrivée des Huguenots français en 1688 a avancé, le développement. Les vins de Constantia deviennent renommés, et ainsi ils sont les premiers “vins d’origine” de l’Afrique du Sud. Pendant l’occupation britannique de la province du Cap en 1806, la viticulture a développé, davantage, dû à l’inaccessibilité, de l’Europe et ses vins pendant cette période. On a plant, la plupart des vignobles à la région côtière du sud-ouest, aux environs de la province du Cap, et aux vallées limitrophes. Ces régions sont toujours productrices principales de vin. Vers 1850, les exportations de vin étaient très limitées, dû à la détérioration de la qualité de vin. Ce fait a résulté du manque de contrôle d’origine et de qualité. L’industrie a reconnu ce problème, ce qui mène à la fondation d’un système de contrôle de Vin d’Origine en 1973. Des experts techniques font la démarcation des secteurs de vin, en employant quatre catégories. Ces sont: (1) Régions, (2) Districts, (3) Circonscriptions (‘Wards’), et (4) Domaines. Faute d’assez de traditions, d’expérience et des données expérimentales (contrasté avec les pays européens de viticulture), la philosophie sud-africaine de démarcation embrasse l’identification des unités de terrain naturel, en employant des données techniques qui sont disponibles.

The 340 year old history of viticulture in South Africa started with the first planting of vines by the Commander of the first Dutch settlers at the Cape. Further expansion was encouraged by succeeding Governors and also stimulated by the arrival of the French Huguenots in 1688. Constantia wines became internationally famous and thus were the first ‘wines of origin’ from South Africa. After the British occupation of the Cape in 1806, viticulture was further stimulated due to the inaccessibility of Europe and its wines to Britain at that stage. Vineyards were mainly established in the south-western coastal zone around the Cape and in adjacent Inland River valleys were irrigation water was available. These areas, characterized by a Mediterranean climate, are still the main wine producing regions today. Towards 1850, wine exports reached an ail time low because of the deterioration in wine quality, mainly as result of the absence of control over origin and quality. This problem was realized by the industry and resulted in a Wine of Origin Control system since 1973. Demarcation of existing vineyards was, and still is, done by technical experts, using four categories, viz. (1) Regions, based on broad geographical features and administrative boundaries; (2) Districts, based on geographical and macro climatic features; (3) Wards, essentially based on uniform soil, climatic and ecological patterns; and (4) Estates, based on the concept of singular ownership of vineyards and wine being produced on the estate. To demarcate Wards, land type maps are used. Land types are a concept unique to South Africa and are defined as a class of land over which the macro climate, the terrain form and soil pattern each displays a marked uniformity. Land types differ from each other in terms of macro climate, terrain form or soil pattern, or combinations of these natural factors. Lacking sufficient tradition, experience and experimental information, compared to the old word wine countries, the philosophy behind demarcation in South Africa is to identify natural terrain units, using available technical information, and then allowing such units to develop and demonstrate particular wine styles and character, rather than demanding proof of uniqueness before demarcation is done.


Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article



Dept. Of Soil Science, University of Stellenbosch, P/Bag X1, Matieland, 7602, RSA


IVES Conference Series | Terroir 1998


Related articles…

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease