Terroir 2012 banner
IVES 9 IVES Conference Series 9 Soil and Climate Interactions with Grapevines

Soil and Climate Interactions with Grapevines

Abstract

To test the hypothesis that soil type plays a minor role relative to that of vine vigor in the determination of yield, fruit composition and wine sensory attributes, 5 Chardonnay vineyards in the Niagara Peninsula of Ontario were chosen for study. These vineyards were located on sites with heterogeneous soil types to allow study of the impact upon yield, fruit composition and wine sensory attributes of: 1. Soil texture with mesoclimate kept constant; 2. The comparative magnitude of effects of soil texture, vine vigor, and crop size. Vineyard blocks were delineated using global positioning systems, and a series of 72-162 data vines per site were geo-located within a sampling grid imposed on each vineyard block. Data were collected on soil texture, soil composition, tissue elemental composition, vine performance (yield components and weight of cane prunings), and fruit composition. These variables were mapped using geographical information systems and relationships between them were elucidated. Soil texture and composition were frequently correlated to yield components and fruit composition but often relationships were site-specific. Spatial correlations were common between % sand, vine size, yield, berry weight, soluble solids (Brix), and titratable acidity (TA); however, these relationships were vineyard and vintage dependent. Several spatial relationships were apparent between vine size, yield, Brix, TA and many soil and petiole composition variables, including organic matter, soil pH, cation exchange capacity, and soil/petiole N, P, K, Ca, Mg, and B. Spatial relationships between yield, berry weight, berry composition, vine size, and several soil physical and composition variables suggests a likely soil basis to the so-called “terroir effect”.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Andrew G. REYNOLDS

Cool Climate Oenology & Viticulture Institute
Brock University, 500 Glenridge Ave., St. Catharines, Ont. L2S 3A1

Contact the author

Keywords

GPS, GIS, soil moisture, leaf water potential, vine size, soil texture

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88).

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Further insight on the use of yeast derivative products as alcoholic fermentation enhancers

Issues that can arise during the alcoholic fermentation are frequently attributed to imbalances or deficiencies in the nutrient composition of the fermentation medium.