Terroir 2012 banner
IVES 9 IVES Conference Series 9 Soil and Climate Interactions with Grapevines

Soil and Climate Interactions with Grapevines

Abstract

To test the hypothesis that soil type plays a minor role relative to that of vine vigor in the determination of yield, fruit composition and wine sensory attributes, 5 Chardonnay vineyards in the Niagara Peninsula of Ontario were chosen for study. These vineyards were located on sites with heterogeneous soil types to allow study of the impact upon yield, fruit composition and wine sensory attributes of: 1. Soil texture with mesoclimate kept constant; 2. The comparative magnitude of effects of soil texture, vine vigor, and crop size. Vineyard blocks were delineated using global positioning systems, and a series of 72-162 data vines per site were geo-located within a sampling grid imposed on each vineyard block. Data were collected on soil texture, soil composition, tissue elemental composition, vine performance (yield components and weight of cane prunings), and fruit composition. These variables were mapped using geographical information systems and relationships between them were elucidated. Soil texture and composition were frequently correlated to yield components and fruit composition but often relationships were site-specific. Spatial correlations were common between % sand, vine size, yield, berry weight, soluble solids (Brix), and titratable acidity (TA); however, these relationships were vineyard and vintage dependent. Several spatial relationships were apparent between vine size, yield, Brix, TA and many soil and petiole composition variables, including organic matter, soil pH, cation exchange capacity, and soil/petiole N, P, K, Ca, Mg, and B. Spatial relationships between yield, berry weight, berry composition, vine size, and several soil physical and composition variables suggests a likely soil basis to the so-called “terroir effect”.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Andrew G. REYNOLDS

Cool Climate Oenology & Viticulture Institute
Brock University, 500 Glenridge Ave., St. Catharines, Ont. L2S 3A1

Contact the author

Keywords

GPS, GIS, soil moisture, leaf water potential, vine size, soil texture

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated.

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

Effect of grape polysaccharides on the volatile composition and aromatic profile of Viura wines

AIM: Many research studies have analyzed the effect of polysaccharides in the aromatic composition of white wines.

Bio‐metaethics viticulture proposed by the Giesco. Direct charter with producers. Example of evaluation of training systems

The key points of the current GiESCO charter ‘BIO‐MetaEthics’ are exposed. The new development in cooperation with Giovanni Cargnello is to apply the principles and the content into the practice by establishing a direct contract with producers and other actors of the wine sector. An evaluation sheet is proposed and tested in a new advanced vineyard. For illustrating the methodology of evaluation, the example of the choice of the training systems is detailed on a wide range of situations. 

Riesling as a model to irrigate white wine grape varieties in arid climates

Regulated deficit irrigation (RDI) is a common viticultural practice for wine grape production. In addition to the potential improvement of water use efficiency, the adoption of this technique favors smaller canopies with higher levels of fruit sun exposure, enhancing quality attributes associated with red wine grapes such as smaller berries with higher tannins and anthocyanins. However, these quality attributes do not necessarily transfer to white wine grapes. The goal of this project was to assess whether partial rootzone drying (PRD) is more suited than RDI to grow high-end white wine grapes in arid climates, especially aromatic varieties, using Riesling as a model.