Terroir 2012 banner
IVES 9 IVES Conference Series 9 Soil and Climate Interactions with Grapevines

Soil and Climate Interactions with Grapevines

Abstract

To test the hypothesis that soil type plays a minor role relative to that of vine vigor in the determination of yield, fruit composition and wine sensory attributes, 5 Chardonnay vineyards in the Niagara Peninsula of Ontario were chosen for study. These vineyards were located on sites with heterogeneous soil types to allow study of the impact upon yield, fruit composition and wine sensory attributes of: 1. Soil texture with mesoclimate kept constant; 2. The comparative magnitude of effects of soil texture, vine vigor, and crop size. Vineyard blocks were delineated using global positioning systems, and a series of 72-162 data vines per site were geo-located within a sampling grid imposed on each vineyard block. Data were collected on soil texture, soil composition, tissue elemental composition, vine performance (yield components and weight of cane prunings), and fruit composition. These variables were mapped using geographical information systems and relationships between them were elucidated. Soil texture and composition were frequently correlated to yield components and fruit composition but often relationships were site-specific. Spatial correlations were common between % sand, vine size, yield, berry weight, soluble solids (Brix), and titratable acidity (TA); however, these relationships were vineyard and vintage dependent. Several spatial relationships were apparent between vine size, yield, Brix, TA and many soil and petiole composition variables, including organic matter, soil pH, cation exchange capacity, and soil/petiole N, P, K, Ca, Mg, and B. Spatial relationships between yield, berry weight, berry composition, vine size, and several soil physical and composition variables suggests a likely soil basis to the so-called “terroir effect”.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Andrew G. REYNOLDS

Cool Climate Oenology & Viticulture Institute
Brock University, 500 Glenridge Ave., St. Catharines, Ont. L2S 3A1

Contact the author

Keywords

GPS, GIS, soil moisture, leaf water potential, vine size, soil texture

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

The amount of synthetic pesticides applied in viticulture is relatively high compared to other agricultural crops, due to the high sensitivity of grapevine to diseases such as downy mildew (Plasmopora viticola). Alternatives to reduce fungicides are utterly needed to promote a sustainable vineyard-ecosystems and meet consumer acceptance. Essential oils (EOs) are amongst the most promising natural plant protection agents and have shown their antifungal properties previously. However, the efficiency of EOs depends highly on timing and application technique.

Investigation of VvDXS function and its effects on muscat flavor levels

In the present study the connection between the positional candidate gene VvDXS and muscat flavor was evaluated by investigating the expression profiles in the berries from a Muscat-type cultivar and a neutral cultivar and its nucleotide diversity of full ORF on grapevine accessions.

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

Use of glutathione and a selected strain of metschnikowia pulcherrima as alternatives to sulphur dioxide to inhibit natural tyrosinase of grape must and prevent browning

The enzymatic browning of grape must is still a major problem in oenology today [1] being particularly serious when the grapes have been infected by grey rot [2]. Browning is an oxidation process that causes certain foods to turn brown, which often leads to them being rejected by consumers [3]. This is a particular problem in the case of wine, because grape must is very vulnerable to enzymatic browning [4].