Macrowine 2021
IVES 9 IVES Conference Series 9 Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

Abstract

AIM: This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane (cis-2-MPO) and cis-2,4,4,6-tetramethyl-1,3-oxathiane (cis-TTMO) in wine. Elucidating these new pathways could aid in explaining the loss of varietal thiols and would further our understanding of the stereochemical relationships between oxathianes and varietal thiols.

METHODS: GC-MS was used to identify cis-2-MPO,1 and a stable isotope dilution assay (SIDA) was developed to quantify its enantiomers after separation with a chiral β-cyclodextrin GC column.2 Varietal thiols and their enantiomers were analysed by SIDA with HPLC-MS/MS to determine their relationship with cis-2-MPO. Production of cis-2-MPO and its correlation with 3-SH, 3-SHA, and acetaldehyde was studied by profiling the evolution of these volatiles during alcoholic fermentation (AF) of Sauvignon blanc (SB) juice fermented with J7, VIN13, and their co-inoculum.3

RESULTS: cis-2-MPO, derived from 3-SH and acetaldehyde, was identified and then measured at up to 460 ng/L (equivalent to 385 ng/L of 3-SH) in a set of wines. Analysis of (2R,4S)-2-MPO and (2S,4R)-2-MPO, arising from thiol enantiomers (3S)-3-SH and (3R)-3-SH, showed respective concentrations of up to 250 and 303 ng/L. The enantiomeric ratio of (2R,4S)-/(2S,4R)-2-MPO was 43:57 whereas that of (3S)-/(3R)-3-SH in the same wines was 51:49.2 Strong correlations were revealed for both 3-SH and cis-2-MPO and their related enantiomeric pairs.The AF study showed cis-2-MPO was produced from an early stage of AF and reached a peak of 847 ng/L (VIN13 ferment) before gradually declining to 50-65 ng/L. Its evolution profile was identical to that of acetaldehyde and 3-SHA, with moderate to strong correlations found for the analytes.Additionally, cis-TTMO, derived from 4-MSPOH and acetaldehyde, was identified in wine as a single enantiomer at concentrations of up to 28 ng/L (equivalent to 23 ng/L of 4-MSPOH). An aroma detection threshold of 14.9 µg/L was determined for cis-TTMO, and this new volatile was described as ‘citrus’, ‘green’, ‘sweet/caramel’, and ‘mango’, shifting toward ‘onion/sweaty’ and ‘sulfurous’ at higher concentrations.2

CONCLUSIONS

The knowledge gained helps rationalise the fate of varietal thiols via the production of oxathianes in wine, and reveals the stereochemical links between these related compounds. A chemical formation pathway to oxathianes was verified and may also apply to other thiols bearing the 1,3-sulfanylalkanol substitution through the reaction with acetaldehyde.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xingchen Wang

Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia,Liang, CHEN, Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, 33882, Villenave d’Ornon cedex, France Dimitra L., CAPONE, Department of Wine Science and Waite Research Institute, Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia Aurélie, ROLAND, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France David W., JEFFERY, Department of Wine Science and Waite Research Institute, Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

3-sulfanylhexan-1-ol, 4-methyl-4-sulfanylpentan-2-ol, acetaldehyde, chiral stationary phase, odour detection threshold, sauvignon blanc, stable isotope dilution assay, gas chromatography–mass spectrometry

Citation

Related articles…

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging. METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.

Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Commercial red wines use the malolactic fermentation process to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled steps.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.