Terroir 2012 banner
IVES 9 IVES Conference Series 9 An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Abstract

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain, especially in developing wine regions. The objective of this research is to demonstrate, and describe the development of an internet based, scientifically objective tool to facilitate vineyard site assessment and grape variety selection in the US. The core of this tool is a spatially explicit environmental database relevant to wine grape production including climate, soil and topography data. The climate summaries are sourced from the U.S. National Climatic Data Center (NCDC) and the World Meteorological Organization (WMO). The daily elements included in our dataset are maximum temperature, minimum temperature, mean temperature, dew point, precipitation, and elevation for 1929 to present. Similarly, our soil database is derived from the Soil Survey Geographic (SSURGO) database for the continental U.S.A and the Harmonized World Soil Database for global soil data. Parameters include soil texture, pH, soil depth, water holding capacity, etc. This database was used to derive established and novel environmental indices relevant to grape production. The indices were used as inputs to mathematical and statistical models to examine the relationship between environmental factors and variety production in selected established growing regions. Finally, we incorporated both the environmental database, and the site/varietal selection models into a web-based site and grape variety selection tool. This tool enables a potential wine grape grower to either determine varieties most suited to a particular site or delineate areas most suitable for growing a particular grape variety.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Elvis TAKOW (1), Edward W. HELLMAN (2), Andrew G. BIRT (1),
Maria D. TCHAKERIAN (1), Robert N. COULSON (1)

(1) Knowledge Engineering Laboratory, Department of Entomology, Texas A&M University, College Station, TX 77843 USA
(2) Texas A&M University, AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX 79403 USA; Department of Plant and Soil Science, Texas Tech University

Contact the author

Keywords

GIS, viticulture and site sélection

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Immunotestπ: a new test for the determination of proteic stability in white and rosé wines

Proteic haze is a problem which may occur in all fruit-based beverages and fermented juices (beer, cider, wine). When it occurs, the economic loss is important.

Exploring the effect of oxygen exposure during malolactic fermentation on red wine color

this research investigates the impact of early oxygen exposure, also during malolactic fermentation (MLF), on pigments and color of a red wine from Sangiovese grapes

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

La protection des terroirs viticoles dans l’AOC Côtes du Rhône (France)

[English version below]

Les terroirs viticoles, et plus particulièrement ceux des vignobles AOC, sont aujourd’hui menacés par de multiples agressions. Ces territoires sont non seulement l’outil de production