Terroir 2012 banner
IVES 9 IVES Conference Series 9 An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Abstract

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain, especially in developing wine regions. The objective of this research is to demonstrate, and describe the development of an internet based, scientifically objective tool to facilitate vineyard site assessment and grape variety selection in the US. The core of this tool is a spatially explicit environmental database relevant to wine grape production including climate, soil and topography data. The climate summaries are sourced from the U.S. National Climatic Data Center (NCDC) and the World Meteorological Organization (WMO). The daily elements included in our dataset are maximum temperature, minimum temperature, mean temperature, dew point, precipitation, and elevation for 1929 to present. Similarly, our soil database is derived from the Soil Survey Geographic (SSURGO) database for the continental U.S.A and the Harmonized World Soil Database for global soil data. Parameters include soil texture, pH, soil depth, water holding capacity, etc. This database was used to derive established and novel environmental indices relevant to grape production. The indices were used as inputs to mathematical and statistical models to examine the relationship between environmental factors and variety production in selected established growing regions. Finally, we incorporated both the environmental database, and the site/varietal selection models into a web-based site and grape variety selection tool. This tool enables a potential wine grape grower to either determine varieties most suited to a particular site or delineate areas most suitable for growing a particular grape variety.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Elvis TAKOW (1), Edward W. HELLMAN (2), Andrew G. BIRT (1),
Maria D. TCHAKERIAN (1), Robert N. COULSON (1)

(1) Knowledge Engineering Laboratory, Department of Entomology, Texas A&M University, College Station, TX 77843 USA
(2) Texas A&M University, AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX 79403 USA; Department of Plant and Soil Science, Texas Tech University

Contact the author

Keywords

GIS, viticulture and site sélection

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

Vers la maîtrise de l’effeuillage pré-floral de la vigne

Dans le cadre de TerclimPro 2025, Thibaut Verdenal a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8405

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

Sustainability as system innovation: sustainability as system innovation: a returnable system for glass wine bottles

Introduction increasing sustainability is essential and a societal challenge, requiring fundamental changes in behaviour and attitudes. This applies to both producers and consumers. For the wine industry in particular, such a change is a major challenge. An eip-agri research project is evaluating the introduction of a returnable glass system in the german wine industry as a key solution for increasing sustainability. Given the need for change associated with a returnable system, the project is theoretically grounded in systems innovation, as this approach provides solutions for complex, transformative change.

Aspect juridiques des terroirs

Le “terroir” est dans tous les discours, les articles, les étiquettes et les publicités. Le voca­ble est en situation d’utilisation euphorique. Indiscutablement l’emploi historique est agri­cole, puis viticole, mais il n’est jamais juridique.