Terroir 2012 banner
IVES 9 IVES Conference Series 9 An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Abstract

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain, especially in developing wine regions. The objective of this research is to demonstrate, and describe the development of an internet based, scientifically objective tool to facilitate vineyard site assessment and grape variety selection in the US. The core of this tool is a spatially explicit environmental database relevant to wine grape production including climate, soil and topography data. The climate summaries are sourced from the U.S. National Climatic Data Center (NCDC) and the World Meteorological Organization (WMO). The daily elements included in our dataset are maximum temperature, minimum temperature, mean temperature, dew point, precipitation, and elevation for 1929 to present. Similarly, our soil database is derived from the Soil Survey Geographic (SSURGO) database for the continental U.S.A and the Harmonized World Soil Database for global soil data. Parameters include soil texture, pH, soil depth, water holding capacity, etc. This database was used to derive established and novel environmental indices relevant to grape production. The indices were used as inputs to mathematical and statistical models to examine the relationship between environmental factors and variety production in selected established growing regions. Finally, we incorporated both the environmental database, and the site/varietal selection models into a web-based site and grape variety selection tool. This tool enables a potential wine grape grower to either determine varieties most suited to a particular site or delineate areas most suitable for growing a particular grape variety.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Elvis TAKOW (1), Edward W. HELLMAN (2), Andrew G. BIRT (1),
Maria D. TCHAKERIAN (1), Robert N. COULSON (1)

(1) Knowledge Engineering Laboratory, Department of Entomology, Texas A&M University, College Station, TX 77843 USA
(2) Texas A&M University, AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX 79403 USA; Department of Plant and Soil Science, Texas Tech University

Contact the author

Keywords

GIS, viticulture and site sélection

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3