Terroir 2012 banner
IVES 9 IVES Conference Series 9 An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Abstract

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain, especially in developing wine regions. The objective of this research is to demonstrate, and describe the development of an internet based, scientifically objective tool to facilitate vineyard site assessment and grape variety selection in the US. The core of this tool is a spatially explicit environmental database relevant to wine grape production including climate, soil and topography data. The climate summaries are sourced from the U.S. National Climatic Data Center (NCDC) and the World Meteorological Organization (WMO). The daily elements included in our dataset are maximum temperature, minimum temperature, mean temperature, dew point, precipitation, and elevation for 1929 to present. Similarly, our soil database is derived from the Soil Survey Geographic (SSURGO) database for the continental U.S.A and the Harmonized World Soil Database for global soil data. Parameters include soil texture, pH, soil depth, water holding capacity, etc. This database was used to derive established and novel environmental indices relevant to grape production. The indices were used as inputs to mathematical and statistical models to examine the relationship between environmental factors and variety production in selected established growing regions. Finally, we incorporated both the environmental database, and the site/varietal selection models into a web-based site and grape variety selection tool. This tool enables a potential wine grape grower to either determine varieties most suited to a particular site or delineate areas most suitable for growing a particular grape variety.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Elvis TAKOW (1), Edward W. HELLMAN (2), Andrew G. BIRT (1),
Maria D. TCHAKERIAN (1), Robert N. COULSON (1)

(1) Knowledge Engineering Laboratory, Department of Entomology, Texas A&M University, College Station, TX 77843 USA
(2) Texas A&M University, AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX 79403 USA; Department of Plant and Soil Science, Texas Tech University

Contact the author

Keywords

GIS, viticulture and site sélection

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Xylem vessel blockages in grape pedicel growing in tropical climate observed by microtomography

In grape berry pedicel, xylem hydraulic conductance can be impaired by blockage deposition in the lumen of xylem elements. However, the varietal difference of the interruptions has not yet been characterized. In this preliminary work, we utilized synchrotron x-ray computed microtomography experiments performed at MOGNO beamline (LNLS – Brazil) to identify possible blockage sites in natural grape pedicel xylem. For this, we imaged dehydrated pedicel’s stem portion from the Niagara Rosada variety in three different phenological stages (Pre-veraison (PreV), veraison (V) and post-veraison (PostV). The reconstructed tridimensional images with a voxel size of 1.16 µm were segmented for the identification of xylem vessel lumens. After analysing one pedicel stem per stage, we identified 658 vessels without occlusion throughout his axial plane and 41 in which we could identify possible interruptions.

Review of the delimited zone of the AOC Saint-Joseph

L’appellation d’origine contrôlée repose sur une définition précise de l’aire de production du raisin. Cette délimitation définie par l’Institut National des Appellations d’Origine est proposée par des experts choisis pour leurs compétences dans le domaine de la connaissance de la relation terroir – vins, après avis du syndicat de défense de chaque AOC.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.)

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.