Terroir 2012 banner
IVES 9 IVES Conference Series 9 Identifying New Zealand Sauvignon blanc terroirs

Identifying New Zealand Sauvignon blanc terroirs

Abstract

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark for Sauvignon blanc around the world. However, under The NZ Geographical Indications (Wines and Spirits) Registration Act 2006, this label covers all the Sauvignon blanc wines from Marlborough irrespective of brand, sub-region or production method. This is not atypical for a young industry, as it takes many years to understand the subtleties of a ‘terroir’ with its own ecophysiological conditions.
To identify distinctive terroirs, a collaborative project with New Zealand Sauvignon blanc grape producers has been initiated. This study investigates the typicality of individual commercial juices. About 100 Sauvignon blanc juices have been collected from throughout New Zealand during harvest 2011, but with the majority coming from Marlborough. Sub-samples of these juices were analysed for a number of compounds and 700-ml ferments wines were made. Fermentation characteristics were recorded and all wines were chemically analysed. A grower survey on vineyard practices was conducted. GIS technology was used to map vineyard practices, soil type and the geological and climatic conditions as well as juice and wine characteristics. The information that has been gathered will help to define identifiable New Zealand terroirs.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Marc GREVEN (1), Laure RESSÉGUIER (2), Victoria, RAW (1), Claire GROSE (1), Richard OLIVER (4), Roger HARKER (3)

(1) The New Zealand Institute for Plant & Food Research Limited, Marlborough, P.O. Box 845, Blenheim, New Zealand
(2) ENITA de Bordeaux, 1 Cours du Générale de Gaulle, 33175 Gradignan, France
(3) The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Private Bag 92 169, Auckland 1142, New Zealand
(4) The New Zealand Institute for Plant & Food Research Limited, Private Bag 3230, Waikato Mail Centre, Hamilton 3240, New Zealand

Keywords

Terroir, Marlborough, Sauvignon blanc, GIS

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Biochemical responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

The South African Table grape industry has to expand to new markets with high quality niche products, but limited water availability threatens sustainable production. To overcome this challenge and to obtain high-quality products for the new markets, require constant technological advancement. Currently, limited available scientific information about growth balances and physiology and especially grape quality parameters, hinders technological advancement and thus efficient regulatory management of the morphological, chemical, and pathological status of table grapes, especially in response to abiotic factors.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).