Terroir 2012 banner
IVES 9 IVES Conference Series 9 Identifying New Zealand Sauvignon blanc terroirs

Identifying New Zealand Sauvignon blanc terroirs

Abstract

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark for Sauvignon blanc around the world. However, under The NZ Geographical Indications (Wines and Spirits) Registration Act 2006, this label covers all the Sauvignon blanc wines from Marlborough irrespective of brand, sub-region or production method. This is not atypical for a young industry, as it takes many years to understand the subtleties of a ‘terroir’ with its own ecophysiological conditions.
To identify distinctive terroirs, a collaborative project with New Zealand Sauvignon blanc grape producers has been initiated. This study investigates the typicality of individual commercial juices. About 100 Sauvignon blanc juices have been collected from throughout New Zealand during harvest 2011, but with the majority coming from Marlborough. Sub-samples of these juices were analysed for a number of compounds and 700-ml ferments wines were made. Fermentation characteristics were recorded and all wines were chemically analysed. A grower survey on vineyard practices was conducted. GIS technology was used to map vineyard practices, soil type and the geological and climatic conditions as well as juice and wine characteristics. The information that has been gathered will help to define identifiable New Zealand terroirs.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Marc GREVEN (1), Laure RESSÉGUIER (2), Victoria, RAW (1), Claire GROSE (1), Richard OLIVER (4), Roger HARKER (3)

(1) The New Zealand Institute for Plant & Food Research Limited, Marlborough, P.O. Box 845, Blenheim, New Zealand
(2) ENITA de Bordeaux, 1 Cours du Générale de Gaulle, 33175 Gradignan, France
(3) The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Private Bag 92 169, Auckland 1142, New Zealand
(4) The New Zealand Institute for Plant & Food Research Limited, Private Bag 3230, Waikato Mail Centre, Hamilton 3240, New Zealand

Keywords

Terroir, Marlborough, Sauvignon blanc, GIS

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Developing an integrated viticulture in the upper part of the hill Somló

The hill Somló looks like a huge island wich jumps out of the see, a few kilometers away from the slope of Bakony highland and on the edge of the Hungarian small plane.

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.