Terroir 2012 banner
IVES 9 IVES Conference Series 9 Identifying New Zealand Sauvignon blanc terroirs

Identifying New Zealand Sauvignon blanc terroirs

Abstract

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark for Sauvignon blanc around the world. However, under The NZ Geographical Indications (Wines and Spirits) Registration Act 2006, this label covers all the Sauvignon blanc wines from Marlborough irrespective of brand, sub-region or production method. This is not atypical for a young industry, as it takes many years to understand the subtleties of a ‘terroir’ with its own ecophysiological conditions.
To identify distinctive terroirs, a collaborative project with New Zealand Sauvignon blanc grape producers has been initiated. This study investigates the typicality of individual commercial juices. About 100 Sauvignon blanc juices have been collected from throughout New Zealand during harvest 2011, but with the majority coming from Marlborough. Sub-samples of these juices were analysed for a number of compounds and 700-ml ferments wines were made. Fermentation characteristics were recorded and all wines were chemically analysed. A grower survey on vineyard practices was conducted. GIS technology was used to map vineyard practices, soil type and the geological and climatic conditions as well as juice and wine characteristics. The information that has been gathered will help to define identifiable New Zealand terroirs.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Marc GREVEN (1), Laure RESSÉGUIER (2), Victoria, RAW (1), Claire GROSE (1), Richard OLIVER (4), Roger HARKER (3)

(1) The New Zealand Institute for Plant & Food Research Limited, Marlborough, P.O. Box 845, Blenheim, New Zealand
(2) ENITA de Bordeaux, 1 Cours du Générale de Gaulle, 33175 Gradignan, France
(3) The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Private Bag 92 169, Auckland 1142, New Zealand
(4) The New Zealand Institute for Plant & Food Research Limited, Private Bag 3230, Waikato Mail Centre, Hamilton 3240, New Zealand

Keywords

Terroir, Marlborough, Sauvignon blanc, GIS

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process.

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.