Terroir 2012 banner
IVES 9 IVES Conference Series 9 Conservation: the best valorisation strategy for wine growing areas

Conservation: the best valorisation strategy for wine growing areas

Abstract

Terroir encompasses many elements, including environment, grapes and human inputs that together contribute to the final wine quality of a certain wine growing area.

From the actual market situation, a clear trend has being emerging in the last years: only a small part of the total wine demand is oriented to high quality wines, the consumer being more oriented towards the medium-low cost wines. Thus, on one side there are the ancient and prominent winegrowing areas yielding high quality wines, where any aspect of the terroir (soil, climate, autochtonous varieties, tradition, landscape) must be valorised. On the other one, there is a new viticulture model spreading in less renowned areas where the traditions are not so deep-seated and where mechanical vineyard management is prevalent.

Considering the evident difference between these two terroirs, it becomes necessary to identify the key elements for each of them and to define their relative significance on wine global quality.
The preservation and valorisation of each single terroir component is the first step to best promote both these viticultures an their products.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

DIEGO TOMASI, Federica GAIOTTI, Gianni FILA

CRA-VIT, Center for Research in Viticulture, Viale 28 Aprile 26, Conegliano (TV), ITALY

Contact the author

Keywords

terroir, climate, soil, landscape

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

The AOC Saint-Emilion, one of the most prestigious in Bordeaux, is located on the right bank of the Dordogne upstream from Libourne. The vineyard is planted on Tertiary (Oligocene) and Quaternary geological formations, on which very varied soils have developed. Numerous studies have taken account of this heterogeneity and made it possible to better understand the functioning and viticultural potential of these soils (Duteau et al. 1981, Van Leeuwen, 1991).

Elucidating white wines peptides: An analytical breaktrough

The chemistry of wine is particularly complex due to biochemical and chemical interactions that significantly modify its organoleptic characteristics and stability over time. Aging on lees is a well-known practice during which various compounds are released, ensuring wines oxidative stability and its overall sensory quality [1,2].

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.