Terroir 2012 banner
IVES 9 IVES Conference Series 9 Conservation: the best valorisation strategy for wine growing areas

Conservation: the best valorisation strategy for wine growing areas

Abstract

Terroir encompasses many elements, including environment, grapes and human inputs that together contribute to the final wine quality of a certain wine growing area.

From the actual market situation, a clear trend has being emerging in the last years: only a small part of the total wine demand is oriented to high quality wines, the consumer being more oriented towards the medium-low cost wines. Thus, on one side there are the ancient and prominent winegrowing areas yielding high quality wines, where any aspect of the terroir (soil, climate, autochtonous varieties, tradition, landscape) must be valorised. On the other one, there is a new viticulture model spreading in less renowned areas where the traditions are not so deep-seated and where mechanical vineyard management is prevalent.

Considering the evident difference between these two terroirs, it becomes necessary to identify the key elements for each of them and to define their relative significance on wine global quality.
The preservation and valorisation of each single terroir component is the first step to best promote both these viticultures an their products.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

DIEGO TOMASI, Federica GAIOTTI, Gianni FILA

CRA-VIT, Center for Research in Viticulture, Viale 28 Aprile 26, Conegliano (TV), ITALY

Contact the author

Keywords

terroir, climate, soil, landscape

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Optimizing vine pruning of Pinot noir and Müller-Thurgau after extreme hail damage

Hail damage can have a major impact on the vine’s physiological growth (defoliation, wood and cane damage) and can lead to significant yield and economic losses.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.