Terroir 2012 banner
IVES 9 IVES Conference Series 9 Conservation: the best valorisation strategy for wine growing areas

Conservation: the best valorisation strategy for wine growing areas

Abstract

Terroir encompasses many elements, including environment, grapes and human inputs that together contribute to the final wine quality of a certain wine growing area.

From the actual market situation, a clear trend has being emerging in the last years: only a small part of the total wine demand is oriented to high quality wines, the consumer being more oriented towards the medium-low cost wines. Thus, on one side there are the ancient and prominent winegrowing areas yielding high quality wines, where any aspect of the terroir (soil, climate, autochtonous varieties, tradition, landscape) must be valorised. On the other one, there is a new viticulture model spreading in less renowned areas where the traditions are not so deep-seated and where mechanical vineyard management is prevalent.

Considering the evident difference between these two terroirs, it becomes necessary to identify the key elements for each of them and to define their relative significance on wine global quality.
The preservation and valorisation of each single terroir component is the first step to best promote both these viticultures an their products.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

DIEGO TOMASI, Federica GAIOTTI, Gianni FILA

CRA-VIT, Center for Research in Viticulture, Viale 28 Aprile 26, Conegliano (TV), ITALY

Contact the author

Keywords

terroir, climate, soil, landscape

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Soil variability effects on vine rootzones and available water

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Water relations of woody perennial plant species

Field irrigation experiments were performed on young « Nonpareil » almond trees, mature « Bartlett » pear trees and mature « Pinot Noir » grapevines, to determine the relation of a number of alternative measures of plant water status (predawn and midday stem and leaf water potential), to a number of indices of plant physiological activity (leaf conductance, vegetative growth and fruit growth and composition).

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.