Terroir 2012 banner
IVES 9 IVES Conference Series 9 Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Abstract

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers. Wine growers have to face new environmental challenges, both through new regulations but also for communication and marketing. Indeed customers and consumers are more and more demanding “green” products, and this also applies to wine. Among the different environmental issues (reduction of pollution, pesticides …) often seen as negative constraints, biodiversity management appears as a positive action, and thus a motivating aspect to work on.

Such collective projects are easier to set up if administrative or “territorial” limits such as Appellation d’Origine Contrôlée are respected. Many projects are currently starting or ongoing in France and Europe. If the content and goals of these projects are often based on conservation actions and biodiversity monitoring, it appears that no standard strategy exists to apply these projects, largely depending on the local context and organizations in charge of it.

A sound technical (agronomic) knowledge is needed to raise interest from farmers (pure ecological reasons are less adapted to this public), and financial assistance seems to be as well a key factor to obtain significant results. The Life+ BioDiVine project aims to reintroduce ecological infrastructures in intensive viticulture areas. Its success is strongly linked to involvement of local stakeholders as wine-boards and syndicates. In fact, it aims to be a project based on a “bottom-up” strategy (demand, motivation and steering committee through the land owners, wine growers) and associated to other local stakeholders. Applied on 7 demonstration sites in France, Spain and Portugal, it gives, apart from an opportunity for maintaining biodiversity, a bigger picture of nature conservation strategies in the agricultural context.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Josépha GUENSER (1), Maarten van HELDEN (2), Benjamin PORTE (3), Joël ROCHARD (3)

(1) Univ. Bordeaux, ISVV, Vitinnov, 1 cours du Général de Gaulle, 33170 Gradignan
(2) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, 1 cours du Général de Gaulle, 33170 Gradignan
(3) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan

Contact the author

Keywords

Common Biodiversity, Landscape management, Territorial development, Conservation actions, Life + BioDiVine

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Climate and the evolving mix of grape varieties in Australia’s wine regions

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.