Terroir 2012 banner
IVES 9 IVES Conference Series 9 Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Abstract

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers. Wine growers have to face new environmental challenges, both through new regulations but also for communication and marketing. Indeed customers and consumers are more and more demanding “green” products, and this also applies to wine. Among the different environmental issues (reduction of pollution, pesticides …) often seen as negative constraints, biodiversity management appears as a positive action, and thus a motivating aspect to work on.

Such collective projects are easier to set up if administrative or “territorial” limits such as Appellation d’Origine Contrôlée are respected. Many projects are currently starting or ongoing in France and Europe. If the content and goals of these projects are often based on conservation actions and biodiversity monitoring, it appears that no standard strategy exists to apply these projects, largely depending on the local context and organizations in charge of it.

A sound technical (agronomic) knowledge is needed to raise interest from farmers (pure ecological reasons are less adapted to this public), and financial assistance seems to be as well a key factor to obtain significant results. The Life+ BioDiVine project aims to reintroduce ecological infrastructures in intensive viticulture areas. Its success is strongly linked to involvement of local stakeholders as wine-boards and syndicates. In fact, it aims to be a project based on a “bottom-up” strategy (demand, motivation and steering committee through the land owners, wine growers) and associated to other local stakeholders. Applied on 7 demonstration sites in France, Spain and Portugal, it gives, apart from an opportunity for maintaining biodiversity, a bigger picture of nature conservation strategies in the agricultural context.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Josépha GUENSER (1), Maarten van HELDEN (2), Benjamin PORTE (3), Joël ROCHARD (3)

(1) Univ. Bordeaux, ISVV, Vitinnov, 1 cours du Général de Gaulle, 33170 Gradignan
(2) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, 1 cours du Général de Gaulle, 33170 Gradignan
(3) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan

Contact the author

Keywords

Common Biodiversity, Landscape management, Territorial development, Conservation actions, Life + BioDiVine

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Qualitative modelling of factors influencing the development of Black rot, for the prediction of damage to bunches

Vines are one of the most pesticide-intensive crops in France, and reducing their use is a major challenge for both the environment and human health.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

ulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010).

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Impact of pedoclimatical conditions on the precocity potential of vineyards in the canton of Geneva

Terroir studies are common nowadays but few have used precise pedoclimatic measures in order to evaluate the precocity potential. The objectives of this work were (i) to assess the effect of main terroir parameters (soil, climate and topography) influencing the phenological development of the vine, and (ii) to evaluate a geostatistic approach by using a high number of already existing plots (higher variability) to analyze the terroir parameters’ impact.