Terroir 2012 banner
IVES 9 IVES Conference Series 9 Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Abstract

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers. Wine growers have to face new environmental challenges, both through new regulations but also for communication and marketing. Indeed customers and consumers are more and more demanding “green” products, and this also applies to wine. Among the different environmental issues (reduction of pollution, pesticides …) often seen as negative constraints, biodiversity management appears as a positive action, and thus a motivating aspect to work on.

Such collective projects are easier to set up if administrative or “territorial” limits such as Appellation d’Origine Contrôlée are respected. Many projects are currently starting or ongoing in France and Europe. If the content and goals of these projects are often based on conservation actions and biodiversity monitoring, it appears that no standard strategy exists to apply these projects, largely depending on the local context and organizations in charge of it.

A sound technical (agronomic) knowledge is needed to raise interest from farmers (pure ecological reasons are less adapted to this public), and financial assistance seems to be as well a key factor to obtain significant results. The Life+ BioDiVine project aims to reintroduce ecological infrastructures in intensive viticulture areas. Its success is strongly linked to involvement of local stakeholders as wine-boards and syndicates. In fact, it aims to be a project based on a “bottom-up” strategy (demand, motivation and steering committee through the land owners, wine growers) and associated to other local stakeholders. Applied on 7 demonstration sites in France, Spain and Portugal, it gives, apart from an opportunity for maintaining biodiversity, a bigger picture of nature conservation strategies in the agricultural context.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Josépha GUENSER (1), Maarten van HELDEN (2), Benjamin PORTE (3), Joël ROCHARD (3)

(1) Univ. Bordeaux, ISVV, Vitinnov, 1 cours du Général de Gaulle, 33170 Gradignan
(2) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, 1 cours du Général de Gaulle, 33170 Gradignan
(3) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan

Contact the author

Keywords

Common Biodiversity, Landscape management, Territorial development, Conservation actions, Life + BioDiVine

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually.

Interaction between commercial mannoproteins and phenolic compounds of two red wines from different Portuguese grape cultivars

The interaction between mannoproteins and wine phenolic compounds is a subject of great interest as some studies show the possible impact in color stability and an improvement in the sensory characteristics namely the reduction of red wine astringency.

Rare earth elements distribution in grape berries

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements.

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.