Historical zoning in the world

Abstract

The study of the interaction between vineyards and the environment to establish the grapevines in the appropriate places has been applied in wine science for 5000 years. Advances in the field of the zoning have not been uniform in time, and have occupied a preferential place in the contributions of Roman writers of the 1st Century AC, the contemplations of Tokay (1700) and Porto (1756) and works of the second half of the 20th century. Zoning practices today integrate multidisciplinary methodologies (viticulture, enology, soils, climatology, cartography, statistics, computer science) and require further development for future application.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2010

Type: Article

Authors

V. Sotés

Catedrático de Viticultura. Universidad Politécnica de Madrid Ciudad Universitaria s/n E-28040 Madrid

Contact the author

Keywords

Zoning – viticulture – world areas -historical

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Effect of certain climatic variables on the phenolic and aromatic composition of two red grape varieties (Merlot and Cabernet-Sauvignon) grown in the Mancha region (Spain)

Between 2002 and 2004 we studied the behaviour of two red grape varieties – Merlot and Cabernet Sauvignon – within the scope of an experimental protocol encompassing 14 plots, 7 of which had not been cultivated, situated in geographically distant locations representing different terroirs of Castilla-La Mancha.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Evolution of astringency during the ripening of red grapes through the tribological astringency index

The phenolic composition of red grapes is one of the most important quality parameters.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.