Terroir 2010 banner
IVES 9 IVES Conference Series 9 Satellite imagery : a tool for large scale vineyard management

Satellite imagery : a tool for large scale vineyard management

Abstract

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.
In a first stage, it was proved that the use of 2m/pixel resolution gave the same precision of field variability mapping than a 0,50 m/pixel resolution, which made possible the use of satellite datas, covering a 57 600 or 302 500 ha zone (respectively 24 km x 24 km or 55 km x 55km). Then a heterogeneity index, adapted from Pringle’s opportunity could be calculated for each vine, which can be characterized by an average leaf cover index (a “vigor” index), and an heterogeneity index. Detection of high levels of bare soil in a vine can also be identified automatically.
Based on these indexes, each vine can be characterized and gathered with other vines with the same characteristics (homogeneous vines with either low or high vigour, heterogeneous vines, abnormal vines with excessive bare soil….). According to such a classification realized just before veraison, the winery could select bins corresponding to each quality of vines. Separate vinifications proved sensorial differences on wines: homogeneous vines would give wines with intense jammy and spicy flavours, interesting body in mouth, and smooth tannins, whereas heterogeneous vines tended to produce wines with more red fruit and grassy aromas, and coarser tannins. These differences are consistent from year to year. This selection method is used on 50 % of carignan vines by the winery, which cannot be visited by its technical staff.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

J. ROUSSEAU(1), H. POILVE(2), B. TISSEYRE(3), J. COLLAS(4), D. GRANES(5)

(1) Groupe Institut Coopératif du Vin La Jasse de Maurin F34970 LATTES
(2) INFOTERRA Parc Technologique du Canal – 15, Avenue de l’Europe F31522 RAMONVILLE , France
(3) SUPAGRO UMR ITAP Place Viala F34060 MONTPELLIER France
(4) Vignerons du Mont Tauch F11350 TUCHAN

Contact the author

Keywords

Remote sensing, satellite imagery, vine selection, wine quality, within-vineyard variability

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Water recharge before budbreak and/or deficit irrigation during summer: agronomic effects on cv. Tempranillo in the D.O. Ribera del Duero

The availability of water in the soil and the water status of the vineyard are proving to be determining factors for crop management in the current context of climatic variation

Entre ce que les consommateurs disent, ce qu’ils apprécient et ce qu’ils achètent… où se situent les vins de chasselas ?

Originaire du bassin lémanique, le chasselas est l’emblème de la viticulture suisse. Pour autant, les surfaces de chasselas n’ont cessé de diminuer, passant de 6’585 hectares en 1986 à près de 3’600 aujourd’hui, reflet d’une baisse de consommation. Une récente étude a cherché à comprendre les raisons de ce désintérêt. Réalisée dans