Terroir 2010 banner
IVES 9 IVES Conference Series 9 Satellite imagery : a tool for large scale vineyard management

Satellite imagery : a tool for large scale vineyard management

Abstract

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.
In a first stage, it was proved that the use of 2m/pixel resolution gave the same precision of field variability mapping than a 0,50 m/pixel resolution, which made possible the use of satellite datas, covering a 57 600 or 302 500 ha zone (respectively 24 km x 24 km or 55 km x 55km). Then a heterogeneity index, adapted from Pringle’s opportunity could be calculated for each vine, which can be characterized by an average leaf cover index (a “vigor” index), and an heterogeneity index. Detection of high levels of bare soil in a vine can also be identified automatically.
Based on these indexes, each vine can be characterized and gathered with other vines with the same characteristics (homogeneous vines with either low or high vigour, heterogeneous vines, abnormal vines with excessive bare soil….). According to such a classification realized just before veraison, the winery could select bins corresponding to each quality of vines. Separate vinifications proved sensorial differences on wines: homogeneous vines would give wines with intense jammy and spicy flavours, interesting body in mouth, and smooth tannins, whereas heterogeneous vines tended to produce wines with more red fruit and grassy aromas, and coarser tannins. These differences are consistent from year to year. This selection method is used on 50 % of carignan vines by the winery, which cannot be visited by its technical staff.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

J. ROUSSEAU(1), H. POILVE(2), B. TISSEYRE(3), J. COLLAS(4), D. GRANES(5)

(1) Groupe Institut Coopératif du Vin La Jasse de Maurin F34970 LATTES
(2) INFOTERRA Parc Technologique du Canal – 15, Avenue de l’Europe F31522 RAMONVILLE , France
(3) SUPAGRO UMR ITAP Place Viala F34060 MONTPELLIER France
(4) Vignerons du Mont Tauch F11350 TUCHAN

Contact the author

Keywords

Remote sensing, satellite imagery, vine selection, wine quality, within-vineyard variability

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Investigating the carbon sequestration potential in vineyard soils–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard in a climate change scenario.

Southern Oregon Ava landscape and climate for wine production

The Southern Oregon American Viticultural Area (AVA) consists of the Applegate Valley, Rogue Valley, Umpqua Valley, Elkton Oregon, and Red Hills of Douglas County sub-AVAs (Figure 1) that are some of the many winegrape producing regions found within the intermountain valleys along the west coast of the United States.

The impact of climate change on wine tourism in Germany

Climate change is profoundly impacting wine tourism in Germany and presents new challenges for wineries.

Mannoprotein extracts from wine lees: characterization and impact on wine properties

This study aims at exploiting an undervalued winemaking by-product, wine yeast lees, by developing efficient and food-grade methods for the extraction of yeast glycoproteins. These extracts were then supplemented to wine and their impact on wine properties assessed.

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.