Terroir 2010 banner
IVES 9 IVES Conference Series 9 Satellite imagery : a tool for large scale vineyard management

Satellite imagery : a tool for large scale vineyard management

Abstract

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.
In a first stage, it was proved that the use of 2m/pixel resolution gave the same precision of field variability mapping than a 0,50 m/pixel resolution, which made possible the use of satellite datas, covering a 57 600 or 302 500 ha zone (respectively 24 km x 24 km or 55 km x 55km). Then a heterogeneity index, adapted from Pringle’s opportunity could be calculated for each vine, which can be characterized by an average leaf cover index (a “vigor” index), and an heterogeneity index. Detection of high levels of bare soil in a vine can also be identified automatically.
Based on these indexes, each vine can be characterized and gathered with other vines with the same characteristics (homogeneous vines with either low or high vigour, heterogeneous vines, abnormal vines with excessive bare soil….). According to such a classification realized just before veraison, the winery could select bins corresponding to each quality of vines. Separate vinifications proved sensorial differences on wines: homogeneous vines would give wines with intense jammy and spicy flavours, interesting body in mouth, and smooth tannins, whereas heterogeneous vines tended to produce wines with more red fruit and grassy aromas, and coarser tannins. These differences are consistent from year to year. This selection method is used on 50 % of carignan vines by the winery, which cannot be visited by its technical staff.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

J. ROUSSEAU(1), H. POILVE(2), B. TISSEYRE(3), J. COLLAS(4), D. GRANES(5)

(1) Groupe Institut Coopératif du Vin La Jasse de Maurin F34970 LATTES
(2) INFOTERRA Parc Technologique du Canal – 15, Avenue de l’Europe F31522 RAMONVILLE , France
(3) SUPAGRO UMR ITAP Place Viala F34060 MONTPELLIER France
(4) Vignerons du Mont Tauch F11350 TUCHAN

Contact the author

Keywords

Remote sensing, satellite imagery, vine selection, wine quality, within-vineyard variability

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Unveiling the bioactive potential of aglianco grape pomace: oleanolic acid as a promising natural product

The winemaking industry generates a substantial amount of byproducts, including grape pomace, which is often discarded as waste. However, this seemingly useless material holds a wealth of bioactive compounds with potential health benefits. Recognizing the value of circular economy principles, this study delves into the comprehensive chemical analysis of aglianco grape pomace, aiming to transform this byproduct into a valuable resource.

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.