Terroir 2010 banner
IVES 9 IVES Conference Series 9 Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Abstract

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values. Stomatal conductance (gs) changed in parallel with AN, indicating that AN was greatly affected by gs. This pattern was repeated every day throughout the summer, with slight modifications according to plant water status. Under severe water stress situations, when as a result of drought gs decreased below 0.05 mol H2O m-2 s-1, intrinsic water use efficiency (WUEi) declined sharply in Tempranillo, which did not happen in Syrah, where despite stomatal closure kept increasing WUEi. Water stress intensified leaf to air vapour pressure deficit (VpdL) response however instantaneous WUE (WUE inst) levels plunged to very low with high VpdL in both cultivars.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

J. Martínez, J. L. Chacón

Instituto de la Vid y del Vino de Castilla-La Mancha. Ctra. de Albacete s/n. 13700 Tomelloso (Spain)

Contact the author

Keywords

leaf to air vapour pressure deficit – leaf water potential – net photosynthetic rate – stomatal conductance – transpiration rate – water use efficiency

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers

Comportamiento de la variedade “Touriga Nacional” en la Región Demarcada del Douro, en diferentes condiciones climáticas y edáficas

A Região Demarcada do Douro, oferece uma diversidade geográfica, climática e biológica (grande número de castas em cultivo) extremamente grande e complexa, originando vinhas

Impact of soil-applied and foliar-applied nitrogen on grape and wine composition

Foliar application of urea may be an efficient way to alter grape and wine composition without increasing vine vigor. However, we know little about the impact of this practice on phenolic compounds and yeast assimilable nitrogen (YAN). Adequate YAN is required for an efficient and complete fermentation, while phenolics are particularly important for the sensory profile of red wines. The goal of this study is to test the impact of foliar urea application at veraison, compared to the traditional soil-applied nitrogen fertilization early in the season, on Syrah berry and wine composition in field conditions.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.

Smart microgrid: how to reduce costs and CO2 emissions in wineries and vineyards

The wine sector is greatly threatened by climate change, but is also one of its contributors.