Terroir 2010 banner
IVES 9 IVES Conference Series 9 Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Abstract

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values. Stomatal conductance (gs) changed in parallel with AN, indicating that AN was greatly affected by gs. This pattern was repeated every day throughout the summer, with slight modifications according to plant water status. Under severe water stress situations, when as a result of drought gs decreased below 0.05 mol H2O m-2 s-1, intrinsic water use efficiency (WUEi) declined sharply in Tempranillo, which did not happen in Syrah, where despite stomatal closure kept increasing WUEi. Water stress intensified leaf to air vapour pressure deficit (VpdL) response however instantaneous WUE (WUE inst) levels plunged to very low with high VpdL in both cultivars.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

J. Martínez, J. L. Chacón

Instituto de la Vid y del Vino de Castilla-La Mancha. Ctra. de Albacete s/n. 13700 Tomelloso (Spain)

Contact the author

Keywords

leaf to air vapour pressure deficit – leaf water potential – net photosynthetic rate – stomatal conductance – transpiration rate – water use efficiency

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine. The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.

Indice bioclimatique de qualité Fregoni

La viticulture dans le monde est sous l’étroite dépendance des conditions climatiques. En effet, la culture de la vigne est concentrée entre 30° et 50° de latitude Nord et 30° à 40° de latitude Sud

A multidisciplinary approach to grapevine zoning G.I.S. technology based: an example of thermal data elaboration

Un grand nombre d’études ont été consacrées à l’évaluation quantitative des effets de climat sur la qualité des vignes, dans différents contextes climatiques. Généralement, la vocation viticole d’un terroire peut être étudiée par des approches mono ou multidisciplinaires.

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening.