Terroir 2010 banner
IVES 9 IVES Conference Series 9 The influence of native flora on Argentine white terroir cv. Torrontes Riojano

The influence of native flora on Argentine white terroir cv. Torrontes Riojano

Abstract

The main objective of this paper is to establish considerable differences between wines from three wine areas or terroir, made with cv Torrontes Riojano.

Seventy-one volatile components were used as variables, obtained by means of solid-liquid extraction, quantification by Gas Chromatography with Flame Ionization Detector (FID), and the use of a multivariate statistical model of classification.

We have been able to conclude that the components which differentiate geographical areas in wines come from native flora which is near the vineyards, either owing to cross-pollination, dispersion both of resin and of pollen of the Larrea genus (jarilla), the wind or the solubility of the volatile components found in the soil.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Raquel Romano, Viviana Trebes, María Esther Barbeito

Normas Analíticas Especiales. Subgerencia de Investigación para la Fiscalización. Instituto Nacional de Vitivinicultura. San Martín 430. Ciudad Mendoza (CP 5500). Argentina.

Contact the author

Keywords

Torrontes, terroir, native flora, jarillas, Larrea, aromas

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Using open source software in viticultural research

Many high quality Open Source scientific applications have been available for a long time. Some of them have proved to be particularly useful for carrying out the usual activities involved in viticultural research projects, such as statistical analyses (including spatial analyses), GIS work, database management (possibly integrated with statistical and spatial analysis) and even “low-level” often highly time-consuming activities (e.g. repetitive task on text files).

The influence of vine row position in terraced Merlot vineyards on water deficit and polyphenols – case study in the Vipava Valley, Slovenia

A study was conducted in the Vipava Valley (Slovenia) to understand the effects of positioning rows of Merlot (Vitis vinifera L.) vines on terraces on plant available water, yield, and grape composition

About long time and vine quality modelisation e pistemological appro ach to geographical viticulture

This work began as an intellectual game, in order to discuss the notion of wine quality in terms of terroir and territory spatial structure. Vine and wine quality has long been questioned by scientists. Each discipline approaching it with his own tools.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.