Terroir 2010 banner
IVES 9 IVES Conference Series 9 The influence of native flora on Argentine white terroir cv. Torrontes Riojano

The influence of native flora on Argentine white terroir cv. Torrontes Riojano

Abstract

The main objective of this paper is to establish considerable differences between wines from three wine areas or terroir, made with cv Torrontes Riojano.

Seventy-one volatile components were used as variables, obtained by means of solid-liquid extraction, quantification by Gas Chromatography with Flame Ionization Detector (FID), and the use of a multivariate statistical model of classification.

We have been able to conclude that the components which differentiate geographical areas in wines come from native flora which is near the vineyards, either owing to cross-pollination, dispersion both of resin and of pollen of the Larrea genus (jarilla), the wind or the solubility of the volatile components found in the soil.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Raquel Romano, Viviana Trebes, María Esther Barbeito

Normas Analíticas Especiales. Subgerencia de Investigación para la Fiscalización. Instituto Nacional de Vitivinicultura. San Martín 430. Ciudad Mendoza (CP 5500). Argentina.

Contact the author

Keywords

Torrontes, terroir, native flora, jarillas, Larrea, aromas

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

Sensory study of potential kokumi compounds in wine 

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the kokumi sensory concept (Yamamoto & Inui-Yamamoto 2023).

Management of varietal thiols in white and rosé wines using biotechnical tools

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,