Terroir 2010 banner
IVES 9 IVES Conference Series 9 Studio dell’ambiente viticolo attraverso la parametrazione (punto di incrocio) delle curve di maturazione delle uve (pinot nero, oltrepo’ pavese pv italia settentrionale – 45° parallelo Nord)

Studio dell’ambiente viticolo attraverso la parametrazione (punto di incrocio) delle curve di maturazione delle uve (pinot nero, oltrepo’ pavese pv italia settentrionale – 45° parallelo Nord)

Abstract

Sono stati presi in considerazione alcuni dati agrometeorologici dell’Oltrepò Pavese (temperature e piovosità degli ultimi 80 anni) e gli studi delle curve di maturazione condotti in zona sul Pinot nero da spumante negli anni (1988-1991, 1999-2000, 2006-2008), si nota che l’aumento progressivo negli anni delle temperature attive (indice di Winkler) ha determinato un anticipo dell’invaiatura, definita dal parametro “punto di incrocio” (intersezione delle funzioni di zuccheri ed acidità nel tempo), con conseguente anticipo della data di vendemmia di circa 12-15 gg.

English version: Some climate data of Oltrepò Pavese D.O.C. zone – 45° of latitude north, north-west Italy – (mainly temperature and rainfall of the last 80 years) and some studies of Pinot noir ripening are considered. An increase of the temperature (Winkler index, °C) has been recorded mainly in the last twenty years. According with this the date of the full veraison, pointed with the method of the cross point between the lines of sugar (°Brix) and total acidity (g/L), results anticipated of 15 days with vintage advance of about 12- 15 days.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Alberto Vercesi

Università Cattolica del Sacro Cuore, via Emilia Parmense, 84 – 29122 Piacenza

Contact the author

Keywords

Grapevine, terroir, climate change, ripening

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

To meet the demand of assessment tool of water managers we adapted to the vine production the INDIGO® method to developed initially for arable farming at the field scale.

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.