Terroir 2010 banner
IVES 9 IVES Conference Series 9 Studio dell’ambiente viticolo attraverso la parametrazione (punto di incrocio) delle curve di maturazione delle uve (pinot nero, oltrepo’ pavese pv italia settentrionale – 45° parallelo Nord)

Studio dell’ambiente viticolo attraverso la parametrazione (punto di incrocio) delle curve di maturazione delle uve (pinot nero, oltrepo’ pavese pv italia settentrionale – 45° parallelo Nord)

Abstract

Sono stati presi in considerazione alcuni dati agrometeorologici dell’Oltrepò Pavese (temperature e piovosità degli ultimi 80 anni) e gli studi delle curve di maturazione condotti in zona sul Pinot nero da spumante negli anni (1988-1991, 1999-2000, 2006-2008), si nota che l’aumento progressivo negli anni delle temperature attive (indice di Winkler) ha determinato un anticipo dell’invaiatura, definita dal parametro “punto di incrocio” (intersezione delle funzioni di zuccheri ed acidità nel tempo), con conseguente anticipo della data di vendemmia di circa 12-15 gg.

English version: Some climate data of Oltrepò Pavese D.O.C. zone – 45° of latitude north, north-west Italy – (mainly temperature and rainfall of the last 80 years) and some studies of Pinot noir ripening are considered. An increase of the temperature (Winkler index, °C) has been recorded mainly in the last twenty years. According with this the date of the full veraison, pointed with the method of the cross point between the lines of sugar (°Brix) and total acidity (g/L), results anticipated of 15 days with vintage advance of about 12- 15 days.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Alberto Vercesi

Università Cattolica del Sacro Cuore, via Emilia Parmense, 84 – 29122 Piacenza

Contact the author

Keywords

Grapevine, terroir, climate change, ripening

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

Caffeic acid (CA) is an antioxidant of great importance in the food sector, such as wine, where it acts as a marker of wine ageing, as well as in the health sector due to its antioxidant properties and beneficial effects including the prevention of inflammation, cancer, neurodegenerative diseases, and diabetes.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

Effects of ethanol removal techniques on Nero d’Avola wine

Over the past two decades, climate change has contributed to an increase in sugar content in grape must, and consequently, in the ethanol levels of wines.

Study to optimize the effectiveness of copper treatments for low impact viticulture

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981).

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest.