Terroir 2010 banner
IVES 9 IVES Conference Series 9 Etude des effets millésime, situation et sol à partir d’un observatoire du Gamay en beaujolais

Etude des effets millésime, situation et sol à partir d’un observatoire du Gamay en beaujolais

Abstract

Des expérimentations sur Gamay ont été réalisées en Beaujolais de 2000 à 2006 sur 10 parcelles d’AOC différentes. De nombreuses mesures ont été effectuées à différents stades (vigne, baies récoltées, vinification et bouteille avec ou sans vieillissement). Ces mesures sont également de natures différentes (données phénologiques, analytiques, dégustation). Des analyses de la composition des sols sont également disponibles. Des travaux d’analyse de données ont permis d’effectuer une analyse exploratoire de la base de données afin de déterminer et quantifier les effets de divers facteurs (parcelle, millésime) sur certains des paramètres mesurés au cours du procédé de vinification. Ces effets ont également été mis en relation avec l’analyse des sols.

Les résultats confirment l’effet important du millésime. Une typologie des millésimes se dégage grâce aux outils utilisés. Un fort effet parcelle est également mis en évidence. Une corrélation existe entre couleur et acidité. Il est vérifié que la variable de rendement n’est pas responsable de l’effet parcelle pour les témoins. L’effet parcelle est en partie bien expliqué par la précocité, liée en général à l’altitude et au climat. Par contre cet effet est peu expliqué par le type d’AOC. La typologie de composition des sols présente un lien avec le type d’AOC. Les Beaujolais-Villages présentent notamment une bonne homogénéité. La composition des sols semble avoir peu d’impact sur le raisin et le vin produits sur les témoins.

English version: From 2000 to 2006 an important study was carried out on 10 plots in different Beaujolais AOC. Numerous measures were made at different stages (vine, must, vinification) with different nature (phenology, chemical, sensorial analysis). Data analysis have allowed to determine and quantify factor effects such as situation or vintage on wine characteristics. Soil analysis were also used in this study.

Results confirm important effect of vintage and it is possible to classify the different vintages with statistic tools used in this study. An important situation effect, independent of yield, was also highlighted. This effect is well explained by earliness but poorly by AOC. A strong correlation exists between wine color and acidity. There is a good relation between soil type and AOC, particularly with Beaujolais-Villages. But soil composition seems to have a weak influence on grape and wine characteristics.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

V. Lempereur (1), S. Preys (2), J.Y. Cahurel (1)

(1) IFV-SICAREX-Beaujolais, 210 boulevard Vermorel, BP 320, 69661 Villefranche Cedex, France
(2) Ondalys, 385 avenue des Baronnes, 34730 Prades-le-Lez, France

Contact the author

Keywords

Data analysis – earliness – situation – soil – vintage

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Il Soave: esempio di cultura e di scienza

L’evoluzione del settore viti-enologico, supportato dalla ricerca ci propone sempre più frequentemente vini unici e inconfondibili. Il merito di ciò è da ricercare nel rapporto vitigno-territorio e dalla

Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

The AOC Saint-Emilion, one of the most prestigious in Bordeaux, is located on the right bank of the Dordogne upstream from Libourne. The vineyard is planted on Tertiary (Oligocene) and Quaternary geological formations, on which very varied soils have developed. Numerous studies have taken account of this heterogeneity and made it possible to better understand the functioning and viticultural potential of these soils (Duteau et al. 1981, Van Leeuwen, 1991).

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO 624-2022).