Terroir 2010 banner
IVES 9 IVES Conference Series 9 Validation of phenological models for grapevine in the Veneto region

Validation of phenological models for grapevine in the Veneto region

Abstract

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM). Unlike TT, which quantifies the accumulation of heat units which trigger bud break and the subsequent development phases, the UM describes also the fulfilment of chilling requirements, predicting the date of dormancy break, and implements a finer description of the plant development temperature-dependency. The models were fitted and validated on phenological observations collected from 1986 and 2008 in a site of North-Eastern Italy, on the cultivars Glera, Chardonnay, Merlot and Cabernet Sauvignon. The UM fitted better to observations than TT, and yielded more accurate estimates on the validation dataset. In both models, the accuracy of estimates decreased from bud break to veraison.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

G. Fila (1), P. Belvini (2), F. Meggio (1), A. Pitacco (1)

(1) University of Padova, Department of Environmental Agronomy and Crop Science I-35020Legnaro (PD), Italy
(2) Centro per l’Educazione la Cooperazione e l’Assistenza Tecnica. I-31033-Castelfranco Veneto (TV),

Contact the author

Keywords

Grapevine phenology, modelling

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited.

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.

The science of fungi in grapevine: An essential new book covering all aspects of fungi in viticulture

Grapevine is one of the world’s most important cultivated plants, domesticated from the wild vine over 11,000 years ago. The fungi associated with it are doubtless as old as the plant itself. Despite their co-evolution with the vine over the centuries, it was only with the invention of the microscope in the seventeenth century that fungi started to be recognised.

Influence of pre-fermentative steps on varietal thiol precursors

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH),

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.