Terroir 2010 banner
IVES 9 IVES Conference Series 9 Validation of phenological models for grapevine in the Veneto region

Validation of phenological models for grapevine in the Veneto region

Abstract

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM). Unlike TT, which quantifies the accumulation of heat units which trigger bud break and the subsequent development phases, the UM describes also the fulfilment of chilling requirements, predicting the date of dormancy break, and implements a finer description of the plant development temperature-dependency. The models were fitted and validated on phenological observations collected from 1986 and 2008 in a site of North-Eastern Italy, on the cultivars Glera, Chardonnay, Merlot and Cabernet Sauvignon. The UM fitted better to observations than TT, and yielded more accurate estimates on the validation dataset. In both models, the accuracy of estimates decreased from bud break to veraison.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

G. Fila (1), P. Belvini (2), F. Meggio (1), A. Pitacco (1)

(1) University of Padova, Department of Environmental Agronomy and Crop Science I-35020Legnaro (PD), Italy
(2) Centro per l’Educazione la Cooperazione e l’Assistenza Tecnica. I-31033-Castelfranco Veneto (TV),

Contact the author

Keywords

Grapevine phenology, modelling

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Il paesaggio delle alberate aversane ed il vino Asprinio

Nel corso del 2009, in alcuni vigneti allevati ad alberata in provincia di Caserta (Italia), è stata avviata una ricerca per valutare la variabilità genetica della popolazione del vitigno ‘Asprinio’, la condizione sanitaria delle piante e le caratteristiche del vino sia rispetto alla forma di allevamento (alberata tradizionale e controspalliera) che all’altezza della fascia produttiva.

Integrative grape to wine metabolite analyses to study the vineyard “memory” of wine

Wine production is a complex multi-step process and the end-product is not easily defined in terms of composition and quality due to the diversity of the raw materials (grapes) and the biological agents (yeast and bacteria) used/present during the fermentation. Furthermore, linking what happens in the vineyard to the wine fermentation and ultimately to characteristics in the wine during ageing

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).

Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

The amount of synthetic pesticides applied in viticulture is relatively high compared to other agricultural crops, due to the high sensitivity of grapevine to diseases such as downy mildew (Plasmopora viticola). Alternatives to reduce fungicides are utterly needed to promote a sustainable vineyard-ecosystems and meet consumer acceptance. Essential oils (EOs) are amongst the most promising natural plant protection agents and have shown their antifungal properties previously. However, the efficiency of EOs depends highly on timing and application technique.