Terroir 2010 banner
IVES 9 IVES Conference Series 9 Validation of phenological models for grapevine in the Veneto region

Validation of phenological models for grapevine in the Veneto region

Abstract

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM). Unlike TT, which quantifies the accumulation of heat units which trigger bud break and the subsequent development phases, the UM describes also the fulfilment of chilling requirements, predicting the date of dormancy break, and implements a finer description of the plant development temperature-dependency. The models were fitted and validated on phenological observations collected from 1986 and 2008 in a site of North-Eastern Italy, on the cultivars Glera, Chardonnay, Merlot and Cabernet Sauvignon. The UM fitted better to observations than TT, and yielded more accurate estimates on the validation dataset. In both models, the accuracy of estimates decreased from bud break to veraison.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

G. Fila (1), P. Belvini (2), F. Meggio (1), A. Pitacco (1)

(1) University of Padova, Department of Environmental Agronomy and Crop Science I-35020Legnaro (PD), Italy
(2) Centro per l’Educazione la Cooperazione e l’Assistenza Tecnica. I-31033-Castelfranco Veneto (TV),

Contact the author

Keywords

Grapevine phenology, modelling

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

El medio natural de Chile como factor de adaptación de la vid

Chile, junto con Australia, EE.UU., Sudáfrica, Argentina y Nueva Zelanda constituye el grupo de países del nuevo mundo vitivinícola. Todos ellos en conjunto han experimentado en la última década

Étude de la cinétique de transfert du 2,4,6-trichloroanisole (TCA) entre des bouchons en liège naturel et le vin – premiers résultats

The last step in winemaking is packaging the wines for market placement, while preserving the quality attained during vinification. Since the 1980s, 2,4,6-trichloroanisole (TCA) has been recognised as an incidental and random contaminant of cork, with its migration into wine thought to contribute to ‘cork taint’. This molecule is not a cork component and little is known about how it is formed on trees. Its formation from the chlorine used to wash the cork stoppers, long suspected, has been excluded by the abandonment of chlorine washing.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

Bud fruitfulness in Vitis vinifera L. cv. Chardonnay in cool climate regions in South Africa

Bud fruitfulness is a key determinant of the potential and the actual yield. The formation of the grapevine yield spans over a period of two consecutive growing seasons (Ferrara & Mazzeo, 2023).