Terroir 2010 banner
IVES 9 IVES Conference Series 9 Validation of phenological models for grapevine in the Veneto region

Validation of phenological models for grapevine in the Veneto region

Abstract

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM). Unlike TT, which quantifies the accumulation of heat units which trigger bud break and the subsequent development phases, the UM describes also the fulfilment of chilling requirements, predicting the date of dormancy break, and implements a finer description of the plant development temperature-dependency. The models were fitted and validated on phenological observations collected from 1986 and 2008 in a site of North-Eastern Italy, on the cultivars Glera, Chardonnay, Merlot and Cabernet Sauvignon. The UM fitted better to observations than TT, and yielded more accurate estimates on the validation dataset. In both models, the accuracy of estimates decreased from bud break to veraison.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

G. Fila (1), P. Belvini (2), F. Meggio (1), A. Pitacco (1)

(1) University of Padova, Department of Environmental Agronomy and Crop Science I-35020Legnaro (PD), Italy
(2) Centro per l’Educazione la Cooperazione e l’Assistenza Tecnica. I-31033-Castelfranco Veneto (TV),

Contact the author

Keywords

Grapevine phenology, modelling

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales.

Soave beyond the zonation

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up.

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product.

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.