Terroir 2010 banner
IVES 9 IVES Conference Series 9 Validation of phenological models for grapevine in the Veneto region

Validation of phenological models for grapevine in the Veneto region

Abstract

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM). Unlike TT, which quantifies the accumulation of heat units which trigger bud break and the subsequent development phases, the UM describes also the fulfilment of chilling requirements, predicting the date of dormancy break, and implements a finer description of the plant development temperature-dependency. The models were fitted and validated on phenological observations collected from 1986 and 2008 in a site of North-Eastern Italy, on the cultivars Glera, Chardonnay, Merlot and Cabernet Sauvignon. The UM fitted better to observations than TT, and yielded more accurate estimates on the validation dataset. In both models, the accuracy of estimates decreased from bud break to veraison.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

G. Fila (1), P. Belvini (2), F. Meggio (1), A. Pitacco (1)

(1) University of Padova, Department of Environmental Agronomy and Crop Science I-35020Legnaro (PD), Italy
(2) Centro per l’Educazione la Cooperazione e l’Assistenza Tecnica. I-31033-Castelfranco Veneto (TV),

Contact the author

Keywords

Grapevine phenology, modelling

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.

Spectral discrimination between Vitis vinifera and labrusca by spectroradiometric techniques

Brazil is one of the few countries where vineyards of Vitis labrusca and Vitis vinifera coexist in the same geographical spaces, due to complex processes of territorial occupation by successive waves of European settlers.

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.