Terroir 2010 banner
IVES 9 IVES Conference Series 9 Use of hyperspectral data for assessing vineyard biophysical and quality parameters in northern Italy

Use of hyperspectral data for assessing vineyard biophysical and quality parameters in northern Italy

Abstract

A total of 39 study sites from 11 commercial vineyards located in two traditional growing areas of Northern Italy were identified for airborne hyperspectral acquisition in summer 2009 with the Aisa-EAGLE Airborne Hyperspectral Imaging Sensor. Field sampling campaigns were conducted during the airborne overflights and around harvest, collecting canopy structural parameters, leaf and canopy biophysical characteristics as well as spectral signatures and must quality traits. Several vegetation indices were calculated from each plot to relate variations in canopy structure and foliar pigment concentration to vine status and grape quality parameters. The up-scaling model through TCARI/OSAVI index allowed to yield acceptable estimates of leaf chlorophyll content. However model refinements are needed to improve its capacity to taking into account understory grass cover at the highest instrument resolution.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

F. Meggio, G. Fila, A. Pitacco

University of Padova, Department of Environmental Agronomy and Crop Science I-35020Legnaro (PD), Italy

Contact the author

Keywords

hyperspectral remote sensing, physiological indices, stress detection, airborne remote sensing

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Vineyards and grape varieties: what is going on in wine professional and consumer minds?

Vineyard and grape variety are two popular ways of classifying wines. Vineyard designation is a traditional practice for European wine labels but is being increasingly replaced by grape variety designation, mainly used for New World and Swiss wine labels.

Critical investigation on additions to improve the sensory characteristics of dealcoholized wine

The demand for dealcoholized wine has been progressively increasing in recent years. Moreover, the attention for such products is probably increasing even more. Due to that increasing demand and market awareness the legal authorities are about changing rules for that products. Also, at OIV level, these products are being intensively discussed for certain time. The production of dealcoholized wine bases on wine as initial product. This wine is then reduced by physical methods to an alcohol content of less than 0.5% vol., or in other words, to less than 4g/l of alcohol. There are various technologies are possible for producing dealcoholized wine (Schmitt and Christmann 2019).

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

In the Champagne vineyards, spring frosts are the cause of significant variations in the volume of the harvest which are very penalizing for the trade. This variability is reflected both in time (years without frost alternating with years with severe frosts) and in space. Certain sectors of the vineyard are in fact statistically more susceptible to frost than others, but each year no municipality can consider itself immune to this climatic accident. The objective of the study is precisely to analyze the spatial distribution of frost and to determine its main mechanisms, linked to the topography of the hillsides, their orientation but also to regional meteorological variables.