Terroir 2010 banner
IVES 9 IVES Conference Series 9 Use of hyperspectral data for assessing vineyard biophysical and quality parameters in northern Italy

Use of hyperspectral data for assessing vineyard biophysical and quality parameters in northern Italy

Abstract

A total of 39 study sites from 11 commercial vineyards located in two traditional growing areas of Northern Italy were identified for airborne hyperspectral acquisition in summer 2009 with the Aisa-EAGLE Airborne Hyperspectral Imaging Sensor. Field sampling campaigns were conducted during the airborne overflights and around harvest, collecting canopy structural parameters, leaf and canopy biophysical characteristics as well as spectral signatures and must quality traits. Several vegetation indices were calculated from each plot to relate variations in canopy structure and foliar pigment concentration to vine status and grape quality parameters. The up-scaling model through TCARI/OSAVI index allowed to yield acceptable estimates of leaf chlorophyll content. However model refinements are needed to improve its capacity to taking into account understory grass cover at the highest instrument resolution.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

F. Meggio, G. Fila, A. Pitacco

University of Padova, Department of Environmental Agronomy and Crop Science I-35020Legnaro (PD), Italy

Contact the author

Keywords

hyperspectral remote sensing, physiological indices, stress detection, airborne remote sensing

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s.

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a

High resolution climatic zoning of the Portuguese viticultural regions

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI).