Terroir 2010 banner
IVES 9 IVES Conference Series 9 Valutazione dell’equilibrio vegeto-produttivo con metodiche di proximal sensing

Valutazione dell’equilibrio vegeto-produttivo con metodiche di proximal sensing

Abstract

Nel biennio 2008-2009, nell’ambito di un progetto multidisciplinare coordinato e finanziato dal Consorzio Tuscania, 4 vigneti in differenti zone della Toscana sono stati monitorati con strumenti di proximal sensing al fine di valutare la variabilità riscontrabile e ottenere delle indicazioni sulle risposte vegetative delle piante e quanti-qualitative delle produzioni. La creazione di mappe di NDVI (uno degli indici di vegetazione più comunemente utilizzati) e di spessore delle chiome (CT, derivato dalla lettura dei sensori ad ultrasuoni), ha permesso di evidenziare nette differenze tra i vigneti studiati e all’interno dei singoli appezzamenti, oltre ad una forte influenza temporale sulle caratteristiche delle chiome; tali evidenze sono state confermate da un’analisi della varianza multivariata. I dati rilevati sono stati correlati con alcuni indici comunemente utilizzati per la valutazione vegeto-produttiva delle piante ottenendo delle correlazioni significative, a conferma della validità dei rilievi effettuati e del loro possibile utilizzo come metodo di monitoraggio della situazione esistente in vigneto e di supporto nei processi decisionali

English version: In 2008, collaborating with Tuscania Consortium, Ibimet of Florence and IASMA, a research was started with the aim of understanding and monitoring existing variability in vineyards and, basing on it, evaluating agronomical practices useful for qualitative and quantitative responses optimization. With this purpose, some experimental parcels were chosen in 4 different Sangiovese and Cabernet S. vineyards placed in 3 areas of Tuscany. Parcels were made by the use of different canopy management techniques in various vigour zones. In established periods (fruit setting, veraison and before technological maturity) some instrumental records were made, using ATV mounted optical and ultrasonic sensors; at the same time, indirect measurements of leaf surface and a Point Quadrat were performed. Statistical analysis allowed to validate instrumental relives and to underline the capability of the system of surveying both spatial and temporal variability both an artificial one, made by agronomical practices.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

P. Carnevali (1), L. Brancadoro (1), S. Di Blasi (2), M. Pieri (2)

(1) Dipartimento di Produzione Vegetale, Università degli Studi di Milano. Via Celoria 2, Milano, Italia
(2) Società Consortile Tuscania s.r.l. Piazza Strozzi 1, Firenze, Italia

Contact the author

Keywords

Proximal Sensing – GreenSeeker – Ultrasounds – Vegetative expression

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Convergence and divergence in chemical and sensory profiles of disease-resistant and Vitis vinifera white wines from South Tyrol: addressing strategies for market adoption

This study investigates the chemical and sensory profiles of white wines produced from disease-resistant hybrid grape cultivars (DRHGCs) compared to traditional Vitis vinifera L. cultivars in South Tyrol, Italy.

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.

Armenia: historical origin of domesticated grapevine

The Armenian highlands are located on the northern border of western asia and stretch up to the caucasus from the north. Throughout human history, country has played an important role in connecting the civilizations of europe and the near east. The recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the pleistocene, ending 11.5 thousand years ago. Findings of this study confirmed that glacial episodes distinguish wild grapes into eastern and western ecotypes around 200-400 ka.

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).