Terroir 2010 banner
IVES 9 IVES Conference Series 9 Valutazione dell’equilibrio vegeto-produttivo con metodiche di proximal sensing

Valutazione dell’equilibrio vegeto-produttivo con metodiche di proximal sensing

Abstract

Nel biennio 2008-2009, nell’ambito di un progetto multidisciplinare coordinato e finanziato dal Consorzio Tuscania, 4 vigneti in differenti zone della Toscana sono stati monitorati con strumenti di proximal sensing al fine di valutare la variabilità riscontrabile e ottenere delle indicazioni sulle risposte vegetative delle piante e quanti-qualitative delle produzioni. La creazione di mappe di NDVI (uno degli indici di vegetazione più comunemente utilizzati) e di spessore delle chiome (CT, derivato dalla lettura dei sensori ad ultrasuoni), ha permesso di evidenziare nette differenze tra i vigneti studiati e all’interno dei singoli appezzamenti, oltre ad una forte influenza temporale sulle caratteristiche delle chiome; tali evidenze sono state confermate da un’analisi della varianza multivariata. I dati rilevati sono stati correlati con alcuni indici comunemente utilizzati per la valutazione vegeto-produttiva delle piante ottenendo delle correlazioni significative, a conferma della validità dei rilievi effettuati e del loro possibile utilizzo come metodo di monitoraggio della situazione esistente in vigneto e di supporto nei processi decisionali

English version: In 2008, collaborating with Tuscania Consortium, Ibimet of Florence and IASMA, a research was started with the aim of understanding and monitoring existing variability in vineyards and, basing on it, evaluating agronomical practices useful for qualitative and quantitative responses optimization. With this purpose, some experimental parcels were chosen in 4 different Sangiovese and Cabernet S. vineyards placed in 3 areas of Tuscany. Parcels were made by the use of different canopy management techniques in various vigour zones. In established periods (fruit setting, veraison and before technological maturity) some instrumental records were made, using ATV mounted optical and ultrasonic sensors; at the same time, indirect measurements of leaf surface and a Point Quadrat were performed. Statistical analysis allowed to validate instrumental relives and to underline the capability of the system of surveying both spatial and temporal variability both an artificial one, made by agronomical practices.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

P. Carnevali (1), L. Brancadoro (1), S. Di Blasi (2), M. Pieri (2)

(1) Dipartimento di Produzione Vegetale, Università degli Studi di Milano. Via Celoria 2, Milano, Italia
(2) Società Consortile Tuscania s.r.l. Piazza Strozzi 1, Firenze, Italia

Contact the author

Keywords

Proximal Sensing – GreenSeeker – Ultrasounds – Vegetative expression

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Under trellis cover crop induces grapevine tolerance to bunch rot

Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

The cultivated area of table grapes worldwide has experienced a paramount increase over the last two decades. In this current scenario, traditional varieties are being replaced by new cultivars that prioritize a profitable and sustainable agriculture, while satisfying consumer demands. It is widely recognized that wine varieties, especially those with red berry flesh, are renowned for their high antioxidant capacity and phenolic compounds, which promote health. Recently, this topic has also gained significance in table grape breeding programs.