Terroir 2020 banner
IVES 9 IVES Conference Series 9 Geological, mineralogical and geochemical influences on the cultivation of vines

Geological, mineralogical and geochemical influences on the cultivation of vines

Abstract

Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.

Methods and Results: Four vineyards in central Chile were selected for multiple scale geological, geomorphological, mineralogical, geochemical and landscape evolution studies. These included regional to local scale geological and geomorphological mapping, hydrological and hydrogeochemical characterization, and mineralogical, geochemical and physicochemical studies of soil-substrate profiles within contrasting cultivation plots of the selected vineyards. Selection of vineyards included two along the coastal cordillera of Central Chile (Casablanca and San Antonio valleys: sp. Pinot noir), and two along the central depression valleys of south Central Chile (Santa Cruz and San Javier valleys: sp. Carmenere). In addition to soil and substrate studies, analysis of berries and juice were carried out, in order to contrast local plot geochemistry to the chemical properties of berries, and therefore the local influence of substrate/soil properties on production. Results determine that the local geological and geomorphological conditions clearly influence the distribution of substrate-soil and water composition, texture, permeability, and physicochemical properties, influencing equilibrium of pH, Eh and chemical composition of substrate/soil/water/plant interaction, having contrasting effects on the chemistry and properties of berries and juice.

Conclusions: 

Despite a long-standing debate on the influence of geology on the cultivation of vines and how these could affect the quality of wines, results demonstrate that at least local geological and geochemical site conditions do affect the physicochemical and chemical properties of the substrate/soil interface, therefore impacting the availability of natural nutrients, the physicochemical properties of soils (pH/Eh), the chemistry of water, and permeability and texture. Variance of these properties on a local vineyard scale, even at a plot scale, influence vine growth conditions, with an impact on berries and juice, hence, defining properties which may be regionally unique. Discrimination of unique conditions may allow determination of land plot selection criteria, be it for local selection of production plots, or for the evaluation and selection of new cultivation land, especially necessary in times of global climate change.

Significance and Impact of the Study: Chile, a world prime wine producer, must adapt to climate change. At present the production of premium wines is geographically well defined, the prime vine cultivation valleys classified on the base of climate and viticulture conditions, not taking into account the local geological and geomorphological characteristics. Characterization of these conditions further south, in regions that will soon be apt for vine cultivation, is highly relevant in order to ensure new production areas will be similar.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Brian Townley*, Pamela Castillo, Sofia Lopez

University of Chile, Santiago, Chile

Contact the author

Keywords

Geology, mineralogy, geochemistry, climate change, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Vineyards and grape varieties: what is going on in wine professional and consumer minds?

Vineyard and grape variety are two popular ways of classifying wines. Vineyard designation is a traditional practice for European wine labels but is being increasingly replaced by grape variety designation, mainly used for New World and Swiss wine labels.

Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

In this study two different compost types and two application methods were studied over 5 years (2009-2013) on mature Cabernet Sauvignon vines grown in a commercial vineyard in the AOC Piave area, northeastern Italy.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Valutazione comparativa di cloni di Pinot nero per la produzione di vini base spumante in alcuni ambienti del Piemonte

Un vasto programma si riferisce alla verifica di 28 selezioni clonali di Pinot nero atte a vini base spumante. Gli impianti sono stati realizzati in diversi ambienti delle Langhe e del Monferrato nel periodo 1992-1996, in 57 vigneti diversi e su una superficie complessiva di circa 50 Ha.

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.