Terroir 2020 banner
IVES 9 IVES Conference Series 9 Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Abstract

Aim: The aim of this project was to evaluate the microclimatic effects on objective measures of fruit quality within different vigour classes of multiple vineyards and to compare the results across the Lodi region of California, USA.

Methods and Results: In May 2019, small temperature sensors were installed in the fruit zones of 10 vineyards in the Lodi region of California. To assess differences in canopy temperature between high and low vigour areas, three sensors were installed in each vineyard, two in the fruit zone (high and low vigor) and one above the canopy (ambient control). Photosynthetically active radiation in the fruit zone was measured at veraison and harvest on 15 vines surrounding each sensor and compared with the temperature data. At harvest, two randomly selected clusters were collected from each of the 15 data vines, combined into one composite sample per temperature sensor, and analysed for individual objective measures of grape quality. Results showed large differences in fruit composition between vigour zones. Daytime temperatures were higher in low vigour zones and canopy light measurements were correlated with anthocyanins (R= 0.59), polymeric tannins (R= 0.55), malic acid (R2 = 0.48), and linalool (R2 = 0.76).  

Conclusions: 

The results showed large differences in fruit quality within vineyards which implies delivery of heterogenous fruit to wineries. Excessive differences in fruit quality could be ameliorated with appropriate canopy management tools geared towards increasing vineyard uniformity. 

Significance and Impact of the Study: Delivery of reliable fruit to wineries by vineyard managers and consistent wines by winemakers is challenging when harvesting large vineyards into single programs. These risks are highlighted by the above results which also provide further evidence for the need of differential management solutions in wine grape production. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

B. Sams1,2*, R. Bramley3, L. Sanchez2, C. Bioni2, N. Dokoozlian2and V. Pagay1

1School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
2Department of Winegrowing Research, E&J Gallo Winery, Modesto, California, USA
3CSIRO, Waite Campus, Urrbrae, SA, Australia

Contact the author

Keywords

Canopy microclimate, objective measures of fruit quality, vineyard variability

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Understanding colloidal instability in white wine model solutions: A study focused on the effect of polysaccharides and salts onto bentonite efficiency

A white wine model solution (12% v/v ethanol, 4 g/L tartaric acid, pH 3.2) was used to assess wine colloidal instability as well as the influence of several wine components on bentonite performance in protein removal.

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management.

Observatoire Grenache en vallée du Rhône : démarche et premiers résultats après une année d’étude

Face à l’enjeu d’affirmer et de mieux comprendre la spécificité des vins en relation avec leur origine, la notion de « terroir », avec la richesse de sens et la diversité des perspectives qui l’éclairent, se révèle la clef de voûte de la production et de la valorisation de vins personnalisés et typiques. Asseoir la connaissance des principaux terroirs de la Vallée du Rhône sur des bases autres que celles, jusqu’alors essentiellement empiriques, invoquées dans la seconde grande région française productrice de vins d’AOC, constitue un projet conforme à l’intérêt voué à cet enjeu d’actualité.

VineAI: artificial intelligence for fungal disease

Early and accurate grapevine disease detection and surveillance are crucial for optimizing vineyard management practices.

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.