Terroir 2020 banner
IVES 9 IVES Conference Series 9 Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Abstract

Aim: The aim of this project was to evaluate the microclimatic effects on objective measures of fruit quality within different vigour classes of multiple vineyards and to compare the results across the Lodi region of California, USA.

Methods and Results: In May 2019, small temperature sensors were installed in the fruit zones of 10 vineyards in the Lodi region of California. To assess differences in canopy temperature between high and low vigour areas, three sensors were installed in each vineyard, two in the fruit zone (high and low vigor) and one above the canopy (ambient control). Photosynthetically active radiation in the fruit zone was measured at veraison and harvest on 15 vines surrounding each sensor and compared with the temperature data. At harvest, two randomly selected clusters were collected from each of the 15 data vines, combined into one composite sample per temperature sensor, and analysed for individual objective measures of grape quality. Results showed large differences in fruit composition between vigour zones. Daytime temperatures were higher in low vigour zones and canopy light measurements were correlated with anthocyanins (R= 0.59), polymeric tannins (R= 0.55), malic acid (R2 = 0.48), and linalool (R2 = 0.76).  

Conclusions: 

The results showed large differences in fruit quality within vineyards which implies delivery of heterogenous fruit to wineries. Excessive differences in fruit quality could be ameliorated with appropriate canopy management tools geared towards increasing vineyard uniformity. 

Significance and Impact of the Study: Delivery of reliable fruit to wineries by vineyard managers and consistent wines by winemakers is challenging when harvesting large vineyards into single programs. These risks are highlighted by the above results which also provide further evidence for the need of differential management solutions in wine grape production. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

B. Sams1,2*, R. Bramley3, L. Sanchez2, C. Bioni2, N. Dokoozlian2and V. Pagay1

1School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
2Department of Winegrowing Research, E&J Gallo Winery, Modesto, California, USA
3CSIRO, Waite Campus, Urrbrae, SA, Australia

Contact the author

Keywords

Canopy microclimate, objective measures of fruit quality, vineyard variability

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, leading to challenges in maintaining wine sensory quality.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

StartupLab and HackaVitis: open innovation and technology transfer in the wine sector

The study analyzes a set of open innovation actions promoted by the innovation environments of the Instituto Federal do Rio Grande do Sul (IFRS), in cooperation with entities, companies in the sector and the Department of Innovation, Science and Technology of Rio Grande do Sul.