Terroir 2020 banner
IVES 9 IVES Conference Series 9 Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Abstract

Aim: The aim of this project was to evaluate the microclimatic effects on objective measures of fruit quality within different vigour classes of multiple vineyards and to compare the results across the Lodi region of California, USA.

Methods and Results: In May 2019, small temperature sensors were installed in the fruit zones of 10 vineyards in the Lodi region of California. To assess differences in canopy temperature between high and low vigour areas, three sensors were installed in each vineyard, two in the fruit zone (high and low vigor) and one above the canopy (ambient control). Photosynthetically active radiation in the fruit zone was measured at veraison and harvest on 15 vines surrounding each sensor and compared with the temperature data. At harvest, two randomly selected clusters were collected from each of the 15 data vines, combined into one composite sample per temperature sensor, and analysed for individual objective measures of grape quality. Results showed large differences in fruit composition between vigour zones. Daytime temperatures were higher in low vigour zones and canopy light measurements were correlated with anthocyanins (R= 0.59), polymeric tannins (R= 0.55), malic acid (R2 = 0.48), and linalool (R2 = 0.76).  

Conclusions: 

The results showed large differences in fruit quality within vineyards which implies delivery of heterogenous fruit to wineries. Excessive differences in fruit quality could be ameliorated with appropriate canopy management tools geared towards increasing vineyard uniformity. 

Significance and Impact of the Study: Delivery of reliable fruit to wineries by vineyard managers and consistent wines by winemakers is challenging when harvesting large vineyards into single programs. These risks are highlighted by the above results which also provide further evidence for the need of differential management solutions in wine grape production. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

B. Sams1,2*, R. Bramley3, L. Sanchez2, C. Bioni2, N. Dokoozlian2and V. Pagay1

1School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
2Department of Winegrowing Research, E&J Gallo Winery, Modesto, California, USA
3CSIRO, Waite Campus, Urrbrae, SA, Australia

Contact the author

Keywords

Canopy microclimate, objective measures of fruit quality, vineyard variability

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Study of intramolecular distribution of hydrogen isotopes in ethanol depending on deuterium content of water and the origin of carbohydrates

The paper presents the results of consistently developing studies carried out in 2022-2024 on the distribution of deuterium 2H(D) in intracellular water of grapes and wine products, taking into account the influence of natural, climatic and technogenic factors using high-resolution quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR.

Valorization of grape marc in a biorefinery loop for producing short- and medium-chain fatty acids, hydrogen, and methane, with polyphenol recovery

Global grape production amounts to approximately 70 million tons per year, with Europe contributing 61% of the world’s wine output, primarily from Italy, France, and Spain.

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.