Terroir 2020 banner
IVES 9 IVES Conference Series 9 Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Abstract

Aim: The aim of this project was to evaluate the microclimatic effects on objective measures of fruit quality within different vigour classes of multiple vineyards and to compare the results across the Lodi region of California, USA.

Methods and Results: In May 2019, small temperature sensors were installed in the fruit zones of 10 vineyards in the Lodi region of California. To assess differences in canopy temperature between high and low vigour areas, three sensors were installed in each vineyard, two in the fruit zone (high and low vigor) and one above the canopy (ambient control). Photosynthetically active radiation in the fruit zone was measured at veraison and harvest on 15 vines surrounding each sensor and compared with the temperature data. At harvest, two randomly selected clusters were collected from each of the 15 data vines, combined into one composite sample per temperature sensor, and analysed for individual objective measures of grape quality. Results showed large differences in fruit composition between vigour zones. Daytime temperatures were higher in low vigour zones and canopy light measurements were correlated with anthocyanins (R= 0.59), polymeric tannins (R= 0.55), malic acid (R2 = 0.48), and linalool (R2 = 0.76).  

Conclusions: 

The results showed large differences in fruit quality within vineyards which implies delivery of heterogenous fruit to wineries. Excessive differences in fruit quality could be ameliorated with appropriate canopy management tools geared towards increasing vineyard uniformity. 

Significance and Impact of the Study: Delivery of reliable fruit to wineries by vineyard managers and consistent wines by winemakers is challenging when harvesting large vineyards into single programs. These risks are highlighted by the above results which also provide further evidence for the need of differential management solutions in wine grape production. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

B. Sams1,2*, R. Bramley3, L. Sanchez2, C. Bioni2, N. Dokoozlian2and V. Pagay1

1School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
2Department of Winegrowing Research, E&J Gallo Winery, Modesto, California, USA
3CSIRO, Waite Campus, Urrbrae, SA, Australia

Contact the author

Keywords

Canopy microclimate, objective measures of fruit quality, vineyard variability

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

The aroma diversity of Italian white wines: a further piece added to the D-Wines project

The wide ampelographic heritage of the Italian wine grape varieties represents a richness in terms of biodiversity and potential market value.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

Grape ripening timing as a base for viticultural zoning: an agro-ecological approach

Due to the central role of the ripening timing in the evaluation of the varietal response to the environmental resources, a method to manage maturation curves has been developed. The method produces an index of veraison precocity and overcomes several methodological problems, like the visual evaluation of the veraison point and the multi-annual and multi-varieties data processing. It is based on a statistical and mathematical processing of the sugar ripening curves.

Effect of microwave maceration and SO2 free vinification on volatile composition of red wines

This study evaluates the effect of microwave treatment in grape maceration on the content of free and glycosidically bound varietal compounds) of must and wine and on the overall aroma of wines produced in the presence and absence of SO2.