Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effects of soil characteristics on manganese transfer from soil to vine and wine

Effects of soil characteristics on manganese transfer from soil to vine and wine

Abstract

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Methods and Results: Recent pedologic mapping of Beaujolais vineyards has enabled a Mn monitoring network to be set up in order to study Mn transfer from soil to vine and wine. Three soil types were considered. Two of the soils can be very high in EDTA Mn: soils from clays with cherts (soil type 7) and former piedmont deposits with leached soils (soil type 8). The third soil, though low in Mn, is the most important and symbolic of Beaujolais: granitic soil. Fifteen plots of Gamay were monitored during 3 years (2015-2017). Besides soil analysis made from pedologic pits, Mn content of petiole, must and wine (red standard wine-making of 40 kg grapes) were determined, as well as grape yield and biomass (pruning weight). Results show that Mn in petioles is better correlated with Mn in wine than Mn in must. Mn content of wine is little in relation with EDTA Mn in soil. It increases when soil pH or cation exchange capacity decreases.

Conclusions: 

This study has shown that Mn concentration in wine can be naturally very high (maximum of 14.6 g/L in this study). Soils with low cation exchange capacity and/or low pH, i.e. soil types 1 and 8, resulted in higher Mn content in wine. Low cation exchange capacity does not allow a great Mn fixation on clay-humic complex and low pH soil solubilizes metal generally and Mn in particular, so it can be taken up by the vine. Mn petiole content is a very good indicator of Mn content in wine. Maceration in red wine-making is also an element to take into consideration.

Significance and Impact of the Study: Mn content in Beaujolais wine can be very high because of soil type, rather than fraud. It is important to highlight this for wine exportations. Mn content in wine can be reduced by correcting the soil pH.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jean-Yves Cahurel1, Pierre Martini1*, B. Chatelet2, I. Letessier3

1Institut Français de la Vigne et du Vin, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône, France
2Sicarex Beaujolais, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône Cedex, France
3Sigales, 453 route de Chamrousse, 38410 St Martin d’Uriage, France

Contact the author

Keywords

Manganese, terroir, soil, Beaujolais, vine, wine

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Struck flint/struck match/gun smoke/mineral aroma is considered desirable in some styles of wines, with this character sometimes evident in wines such as Burgundian Chablis and cooler climate barrel-fermented Australian Chardonnay.

Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

To meet the demand of assessment tool of water managers we adapted to the vine production the INDIGO® method to developed initially for arable farming at the field scale.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

3-Mercaptohexanol (3MH) is a volatile thiol occurring in several white and red wines, where it can contribute to fruity attributes. Its content is typically high in wines from certain grape varieties, in particular Sauvignon blanc, where it is considered a varietal marker. The strong nucleophilic character of thiols makes 3MH rather unstable during wine storage, due to the presence of several strong electrophilic species. Among these electrophilics, those arising from the oxidation of flavan3-ols such as catechin and epi-catechin have been indicated as critical for 3MH stability. Accordingly, there is a generalized interest towards the ability of vinification practices to reduce 3MH loss during aging through the management of wine flavan-3-ols content.