Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effects of soil characteristics on manganese transfer from soil to vine and wine

Effects of soil characteristics on manganese transfer from soil to vine and wine

Abstract

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Methods and Results: Recent pedologic mapping of Beaujolais vineyards has enabled a Mn monitoring network to be set up in order to study Mn transfer from soil to vine and wine. Three soil types were considered. Two of the soils can be very high in EDTA Mn: soils from clays with cherts (soil type 7) and former piedmont deposits with leached soils (soil type 8). The third soil, though low in Mn, is the most important and symbolic of Beaujolais: granitic soil. Fifteen plots of Gamay were monitored during 3 years (2015-2017). Besides soil analysis made from pedologic pits, Mn content of petiole, must and wine (red standard wine-making of 40 kg grapes) were determined, as well as grape yield and biomass (pruning weight). Results show that Mn in petioles is better correlated with Mn in wine than Mn in must. Mn content of wine is little in relation with EDTA Mn in soil. It increases when soil pH or cation exchange capacity decreases.

Conclusions: 

This study has shown that Mn concentration in wine can be naturally very high (maximum of 14.6 g/L in this study). Soils with low cation exchange capacity and/or low pH, i.e. soil types 1 and 8, resulted in higher Mn content in wine. Low cation exchange capacity does not allow a great Mn fixation on clay-humic complex and low pH soil solubilizes metal generally and Mn in particular, so it can be taken up by the vine. Mn petiole content is a very good indicator of Mn content in wine. Maceration in red wine-making is also an element to take into consideration.

Significance and Impact of the Study: Mn content in Beaujolais wine can be very high because of soil type, rather than fraud. It is important to highlight this for wine exportations. Mn content in wine can be reduced by correcting the soil pH.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jean-Yves Cahurel1, Pierre Martini1*, B. Chatelet2, I. Letessier3

1Institut Français de la Vigne et du Vin, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône, France
2Sicarex Beaujolais, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône Cedex, France
3Sigales, 453 route de Chamrousse, 38410 St Martin d’Uriage, France

Contact the author

Keywords

Manganese, terroir, soil, Beaujolais, vine, wine

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Geological history and landscape of the Coastal wine-growing region, South Africa

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Launching the GiESCO guide

Considering that the transfer of research results to the professional level is one of the keys to progress, GiESCO proposes to publish a technical guide supported by scientific references and in the form of standard sheets.