Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effects of soil characteristics on manganese transfer from soil to vine and wine

Effects of soil characteristics on manganese transfer from soil to vine and wine

Abstract

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Methods and Results: Recent pedologic mapping of Beaujolais vineyards has enabled a Mn monitoring network to be set up in order to study Mn transfer from soil to vine and wine. Three soil types were considered. Two of the soils can be very high in EDTA Mn: soils from clays with cherts (soil type 7) and former piedmont deposits with leached soils (soil type 8). The third soil, though low in Mn, is the most important and symbolic of Beaujolais: granitic soil. Fifteen plots of Gamay were monitored during 3 years (2015-2017). Besides soil analysis made from pedologic pits, Mn content of petiole, must and wine (red standard wine-making of 40 kg grapes) were determined, as well as grape yield and biomass (pruning weight). Results show that Mn in petioles is better correlated with Mn in wine than Mn in must. Mn content of wine is little in relation with EDTA Mn in soil. It increases when soil pH or cation exchange capacity decreases.

Conclusions: 

This study has shown that Mn concentration in wine can be naturally very high (maximum of 14.6 g/L in this study). Soils with low cation exchange capacity and/or low pH, i.e. soil types 1 and 8, resulted in higher Mn content in wine. Low cation exchange capacity does not allow a great Mn fixation on clay-humic complex and low pH soil solubilizes metal generally and Mn in particular, so it can be taken up by the vine. Mn petiole content is a very good indicator of Mn content in wine. Maceration in red wine-making is also an element to take into consideration.

Significance and Impact of the Study: Mn content in Beaujolais wine can be very high because of soil type, rather than fraud. It is important to highlight this for wine exportations. Mn content in wine can be reduced by correcting the soil pH.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jean-Yves Cahurel1, Pierre Martini1*, B. Chatelet2, I. Letessier3

1Institut Français de la Vigne et du Vin, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône, France
2Sicarex Beaujolais, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône Cedex, France
3Sigales, 453 route de Chamrousse, 38410 St Martin d’Uriage, France

Contact the author

Keywords

Manganese, terroir, soil, Beaujolais, vine, wine

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

The construction of vineyard landscapes along the Burgundy Côte is the result of geological processes and of human labour. Substratum diversity in this vineyard is the result of a very long history explained by the diversity of Jurassic sedimentary facies and Tertiary tectonic activity. The nature and thickness of Quaternary deposits (Weichselian scree debris and alluvial fans) reflect sediment dynamics concurrent with the last glaciation.

Monitoring of Sangiovese red wine chemical and sensory parameters along one-year aging in different tank materials and glass bottle

The aim of this study was to test how different tank materials could affect the chemical composition and the sensory profile of a red wine during an entire year of aging. For this scope, a single varietal Sangiovese wine was aged, after completing its malolactic fermentation, by using tanks made by different materials. Six thesis were involved in the aging experiment, in particular: stainless